Limits on the Range and Rate of Change in Power Take-Off Load in Ocean Wave Energy Conversion: A Study Using Model Predictive Control

Previous work comparing power take-off (PTO) architectures for ocean wave-powered reverse osmosis suggests that variable displacement in the wave energy converter (WEC)-driven pump does not offer a significant performance advantage. A limitation of that study is that the WEC was subject to a constan...

Full description

Bibliographic Details
Main Authors: Jeremy W. Simmons, James D. Van de Ven
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/16/5909
Description
Summary:Previous work comparing power take-off (PTO) architectures for ocean wave-powered reverse osmosis suggests that variable displacement in the wave energy converter (WEC)-driven pump does not offer a significant performance advantage. A limitation of that study is that the WEC was subject to a constant load within a given sea state (“Coulomb damping”) and did not account for controlled, moment-to-moment variation of the PTO load enabled by a variable displacement pump. This study explores the potential performance advantage of a variable PTO load over Coulomb damping. Model predictive control is used to provide optimal load control with constraints on the PTO load. The constraints include minimum and maximum loads and a limit on the rate of load adjustment. Parameter studies on these constraints enable conclusions about PTO design requirements in addition to providing an estimated performance advantage over Coulomb damping. Numerical simulation of the Oyster 1 WEC is carried out with performance weighted by historical sea state data from Humboldt Bay, CA. The results show a performance advantage of up to 20% higher yearly-average power absorption over Coulomb damping. Additionally, the parameter studies suggest that the PTO load should be adjustable down to at least 25% of the maximum load and should be adjustable between the minimum and maximum loads within a few seconds.
ISSN:1996-1073