Stability and Global Sensitivity Analysis for an Agree-Disagree Model: Partial Rank Correlation Coefficient and Latin Hypercube Sampling Methods

In this paper, we present a new mathematical model that describes agree-disagree opinions during polls. We first present the model and its different compartments. Then, we use the next-generation matrix method to compute thresholds of equilibrium stability. We perform the stability analysis of equil...

Full description

Bibliographic Details
Main Authors: Sara Bidah, Omar Zakary, Mostafa Rachik
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2020/5051248
Description
Summary:In this paper, we present a new mathematical model that describes agree-disagree opinions during polls. We first present the model and its different compartments. Then, we use the next-generation matrix method to compute thresholds of equilibrium stability. We perform the stability analysis of equilibria to determine under which conditions these equilibrium points are stable or unstable. We show that the existence and stability of these equilibria are controlled by the calculated thresholds. Finally, we also perform several computational and statistical experiments to validate the theoretical results obtained in this work. To study the influence of various parameters on these thresholds and to identify the most influential parameters, a global sensitivity analysis is carried out based on the partial rank correlation coefficient method and the Latin hypercube sampling.
ISSN:1687-9643
1687-9651