Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus

We study the boundary value problem −∆u(x) = λf(u(x)), R< |x| < Rˆ u(x)=0, |x| ∈ {R, Rˆ} where λ > 0, f(0) < 0 and f is superlinear. We prove existence of a radially symmetric non-negative solution for λ > 0 sufficiently small and nonexistence of such a solution for λ > 0 larg...

Full description

Bibliographic Details
Main Authors: D. ARCOYA, A. ZERTITI
Format: Article
Language:English
Published: Sapienza Università Editrice 1994-03-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(4)/625-646.pdf
_version_ 1797810821288427520
author D. ARCOYA
A. ZERTITI
author_facet D. ARCOYA
A. ZERTITI
author_sort D. ARCOYA
collection DOAJ
description We study the boundary value problem −∆u(x) = λf(u(x)), R< |x| < Rˆ u(x)=0, |x| ∈ {R, Rˆ} where λ > 0, f(0) < 0 and f is superlinear. We prove existence of a radially symmetric non-negative solution for λ > 0 sufficiently small and nonexistence of such a solution for λ > 0 large.
first_indexed 2024-03-13T07:14:34Z
format Article
id doaj.art-fd84a6f7adaf4de38e077b8060ba3303
institution Directory Open Access Journal
issn 1120-7183
2532-3350
language English
last_indexed 2024-03-13T07:14:34Z
publishDate 1994-03-01
publisher Sapienza Università Editrice
record_format Article
series Rendiconti di Matematica e delle Sue Applicazioni
spelling doaj.art-fd84a6f7adaf4de38e077b8060ba33032023-06-05T14:38:47ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33501994-03-01144625646Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulusD. ARCOYA 0A. ZERTITI1Departamento de Analisis Matematico – Universidad de Granada – 18071 Granada, SpainUniversité Abdelmalek Essaadi – Faculté des Sciences – Departement de Mathematiques – BP2121 Tetouan, MarocWe study the boundary value problem −∆u(x) = λf(u(x)), R< |x| < Rˆ u(x)=0, |x| ∈ {R, Rˆ} where λ > 0, f(0) < 0 and f is superlinear. We prove existence of a radially symmetric non-negative solution for λ > 0 sufficiently small and nonexistence of such a solution for λ > 0 large. https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(4)/625-646.pdfsuperlinear semi-positone problemsradial positive solution
spellingShingle D. ARCOYA
A. ZERTITI
Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus
Rendiconti di Matematica e delle Sue Applicazioni
superlinear semi-positone problems
radial positive solution
title Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus
title_full Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus
title_fullStr Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus
title_full_unstemmed Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus
title_short Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus
title_sort existence and non existence of radially symmetric non negative solutions for a class of semi positone problems in an annulus
topic superlinear semi-positone problems
radial positive solution
url https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(4)/625-646.pdf
work_keys_str_mv AT darcoya existenceandnonexistenceofradiallysymmetricnonnegativesolutionsforaclassofsemipositoneproblemsinanannulus
AT azertiti existenceandnonexistenceofradiallysymmetricnonnegativesolutionsforaclassofsemipositoneproblemsinanannulus