Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus
We study the boundary value problem −∆u(x) = λf(u(x)), R< |x| < Rˆ u(x)=0, |x| ∈ {R, Rˆ} where λ > 0, f(0) < 0 and f is superlinear. We prove existence of a radially symmetric non-negative solution for λ > 0 sufficiently small and nonexistence of such a solution for λ > 0 larg...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sapienza Università Editrice
1994-03-01
|
Series: | Rendiconti di Matematica e delle Sue Applicazioni |
Subjects: | |
Online Access: | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(4)/625-646.pdf |
_version_ | 1797810821288427520 |
---|---|
author | D. ARCOYA A. ZERTITI |
author_facet | D. ARCOYA A. ZERTITI |
author_sort | D. ARCOYA |
collection | DOAJ |
description | We study the boundary value problem
−∆u(x) = λf(u(x)), R< |x| < Rˆ
u(x)=0, |x| ∈ {R, Rˆ}
where λ > 0, f(0) < 0 and f is superlinear. We prove existence of a radially symmetric
non-negative solution for λ > 0 sufficiently small and nonexistence of such a solution
for λ > 0 large.
|
first_indexed | 2024-03-13T07:14:34Z |
format | Article |
id | doaj.art-fd84a6f7adaf4de38e077b8060ba3303 |
institution | Directory Open Access Journal |
issn | 1120-7183 2532-3350 |
language | English |
last_indexed | 2024-03-13T07:14:34Z |
publishDate | 1994-03-01 |
publisher | Sapienza Università Editrice |
record_format | Article |
series | Rendiconti di Matematica e delle Sue Applicazioni |
spelling | doaj.art-fd84a6f7adaf4de38e077b8060ba33032023-06-05T14:38:47ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33501994-03-01144625646Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulusD. ARCOYA 0A. ZERTITI1Departamento de Analisis Matematico – Universidad de Granada – 18071 Granada, SpainUniversité Abdelmalek Essaadi – Faculté des Sciences – Departement de Mathematiques – BP2121 Tetouan, MarocWe study the boundary value problem −∆u(x) = λf(u(x)), R< |x| < Rˆ u(x)=0, |x| ∈ {R, Rˆ} where λ > 0, f(0) < 0 and f is superlinear. We prove existence of a radially symmetric non-negative solution for λ > 0 sufficiently small and nonexistence of such a solution for λ > 0 large. https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(4)/625-646.pdfsuperlinear semi-positone problemsradial positive solution |
spellingShingle | D. ARCOYA A. ZERTITI Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus Rendiconti di Matematica e delle Sue Applicazioni superlinear semi-positone problems radial positive solution |
title | Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus |
title_full | Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus |
title_fullStr | Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus |
title_full_unstemmed | Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus |
title_short | Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus |
title_sort | existence and non existence of radially symmetric non negative solutions for a class of semi positone problems in an annulus |
topic | superlinear semi-positone problems radial positive solution |
url | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(4)/625-646.pdf |
work_keys_str_mv | AT darcoya existenceandnonexistenceofradiallysymmetricnonnegativesolutionsforaclassofsemipositoneproblemsinanannulus AT azertiti existenceandnonexistenceofradiallysymmetricnonnegativesolutionsforaclassofsemipositoneproblemsinanannulus |