Automatic Detection of Generated Texts and Energy: Exploring the Relationship
The proliferation of artificial intelligence (AI) and natural language processing (NLP) technologies has enabled the generation of realistic and coherent texts, but it also raises concerns regarding the potential misuse of these technologies for generating misleading or malicious content. Automatic...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2023-01-01
|
Series: | E3S Web of Conferences |
Subjects: | |
Online Access: | https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/49/e3sconf_icies2023_01101.pdf |
Summary: | The proliferation of artificial intelligence (AI) and natural language processing (NLP) technologies has enabled the generation of realistic and coherent texts, but it also raises concerns regarding the potential misuse of these technologies for generating misleading or malicious content. Automatic detection of generated texts is crucial in addressing this issue. This article provides a comprehensive examination of the relationship between the detection of generated texts and energy consumption, delving into the techniques, challenges, and opportunities for developing energyefficient algorithms for text detection. |
---|---|
ISSN: | 2267-1242 |