A triviality result for semilinear parabolic equations
We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $ on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, whe...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2022-01-01
|
Series: | Mathematics in Engineering |
Subjects: | |
Online Access: | https://aimspress.com/article/doi/10.3934/mine.2022002?viewType=HTML |
_version_ | 1818333567636209664 |
---|---|
author | Daniele Castorina Giovanni Catino Carlo Mantegazza |
author_facet | Daniele Castorina Giovanni Catino Carlo Mantegazza |
author_sort | Daniele Castorina |
collection | DOAJ |
description | We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $ on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, when $ p $ is smaller than the critical Sobolev exponent $ \frac{n+2}{n-2} $. |
first_indexed | 2024-12-13T13:53:42Z |
format | Article |
id | doaj.art-fd89ba2ef6094591a24359db3256d5f1 |
institution | Directory Open Access Journal |
issn | 2640-3501 |
language | English |
last_indexed | 2024-12-13T13:53:42Z |
publishDate | 2022-01-01 |
publisher | AIMS Press |
record_format | Article |
series | Mathematics in Engineering |
spelling | doaj.art-fd89ba2ef6094591a24359db3256d5f12022-12-21T23:42:59ZengAIMS PressMathematics in Engineering2640-35012022-01-014111510.3934/mine.2022002A triviality result for semilinear parabolic equationsDaniele Castorina 0Giovanni Catino1Carlo Mantegazza21. Dipartimento di Matematica e Applicazioni, Università di Napoli, Via Cintia, Monte S. Angelo 80126 Napoli, Italy2. Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy1. Dipartimento di Matematica e Applicazioni, Università di Napoli, Via Cintia, Monte S. Angelo 80126 Napoli, ItalyWe show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $ on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, when $ p $ is smaller than the critical Sobolev exponent $ \frac{n+2}{n-2} $.https://aimspress.com/article/doi/10.3934/mine.2022002?viewType=HTMLancient solutioneternal solutionsuperlinear heat equation |
spellingShingle | Daniele Castorina Giovanni Catino Carlo Mantegazza A triviality result for semilinear parabolic equations Mathematics in Engineering ancient solution eternal solution superlinear heat equation |
title | A triviality result for semilinear parabolic equations |
title_full | A triviality result for semilinear parabolic equations |
title_fullStr | A triviality result for semilinear parabolic equations |
title_full_unstemmed | A triviality result for semilinear parabolic equations |
title_short | A triviality result for semilinear parabolic equations |
title_sort | triviality result for semilinear parabolic equations |
topic | ancient solution eternal solution superlinear heat equation |
url | https://aimspress.com/article/doi/10.3934/mine.2022002?viewType=HTML |
work_keys_str_mv | AT danielecastorina atrivialityresultforsemilinearparabolicequations AT giovannicatino atrivialityresultforsemilinearparabolicequations AT carlomantegazza atrivialityresultforsemilinearparabolicequations AT danielecastorina trivialityresultforsemilinearparabolicequations AT giovannicatino trivialityresultforsemilinearparabolicequations AT carlomantegazza trivialityresultforsemilinearparabolicequations |