A triviality result for semilinear parabolic equations

We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $ on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, whe...

Full description

Bibliographic Details
Main Authors: Daniele Castorina, Giovanni Catino, Carlo Mantegazza
Format: Article
Language:English
Published: AIMS Press 2022-01-01
Series:Mathematics in Engineering
Subjects:
Online Access:https://aimspress.com/article/doi/10.3934/mine.2022002?viewType=HTML
_version_ 1818333567636209664
author Daniele Castorina
Giovanni Catino
Carlo Mantegazza
author_facet Daniele Castorina
Giovanni Catino
Carlo Mantegazza
author_sort Daniele Castorina
collection DOAJ
description We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $ on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, when $ p $ is smaller than the critical Sobolev exponent $ \frac{n+2}{n-2} $.
first_indexed 2024-12-13T13:53:42Z
format Article
id doaj.art-fd89ba2ef6094591a24359db3256d5f1
institution Directory Open Access Journal
issn 2640-3501
language English
last_indexed 2024-12-13T13:53:42Z
publishDate 2022-01-01
publisher AIMS Press
record_format Article
series Mathematics in Engineering
spelling doaj.art-fd89ba2ef6094591a24359db3256d5f12022-12-21T23:42:59ZengAIMS PressMathematics in Engineering2640-35012022-01-014111510.3934/mine.2022002A triviality result for semilinear parabolic equationsDaniele Castorina 0Giovanni Catino1Carlo Mantegazza21. Dipartimento di Matematica e Applicazioni, Università di Napoli, Via Cintia, Monte S. Angelo 80126 Napoli, Italy2. Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy1. Dipartimento di Matematica e Applicazioni, Università di Napoli, Via Cintia, Monte S. Angelo 80126 Napoli, ItalyWe show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $ on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, when $ p $ is smaller than the critical Sobolev exponent $ \frac{n+2}{n-2} $.https://aimspress.com/article/doi/10.3934/mine.2022002?viewType=HTMLancient solutioneternal solutionsuperlinear heat equation
spellingShingle Daniele Castorina
Giovanni Catino
Carlo Mantegazza
A triviality result for semilinear parabolic equations
Mathematics in Engineering
ancient solution
eternal solution
superlinear heat equation
title A triviality result for semilinear parabolic equations
title_full A triviality result for semilinear parabolic equations
title_fullStr A triviality result for semilinear parabolic equations
title_full_unstemmed A triviality result for semilinear parabolic equations
title_short A triviality result for semilinear parabolic equations
title_sort triviality result for semilinear parabolic equations
topic ancient solution
eternal solution
superlinear heat equation
url https://aimspress.com/article/doi/10.3934/mine.2022002?viewType=HTML
work_keys_str_mv AT danielecastorina atrivialityresultforsemilinearparabolicequations
AT giovannicatino atrivialityresultforsemilinearparabolicequations
AT carlomantegazza atrivialityresultforsemilinearparabolicequations
AT danielecastorina trivialityresultforsemilinearparabolicequations
AT giovannicatino trivialityresultforsemilinearparabolicequations
AT carlomantegazza trivialityresultforsemilinearparabolicequations