DESAIN DAN ANALISIS NUMERIK RUANG BAKAR BRIKET SAMPAH ANORGANIK UNTUK PENGAPLIKASIAN PADA MIKROTURBIN GAS

The utilization of briquettes as a source of electricity generation is still low due to the briquette characteristics that have high moisture content. This research analyzes the briquette's potential as a source of electrical energy by utilizing its syngas with microturbine gas. The high qualit...

Full description

Bibliographic Details
Main Authors: Erlanda A Pane, Eko Prasetyo, Rudi Hermawan, David H Gouwin
Format: Article
Language:English
Published: University of Brawijaya 2022-06-01
Series:Rekayasa Mesin
Subjects:
Online Access:https://rekayasamesin.ub.ac.id/index.php/rm/article/view/1016
_version_ 1811245226690347008
author Erlanda A Pane
Eko Prasetyo
Rudi Hermawan
David H Gouwin
author_facet Erlanda A Pane
Eko Prasetyo
Rudi Hermawan
David H Gouwin
author_sort Erlanda A Pane
collection DOAJ
description The utilization of briquettes as a source of electricity generation is still low due to the briquette characteristics that have high moisture content. This research analyzes the briquette's potential as a source of electrical energy by utilizing its syngas with microturbine gas. The high quality of syngas can be reached by the optimal combustion chamber design. Therefore, the research aim is to be able to design the optimum combustion chamber for the briquette combustion process to generate the syngas. This research method uses two steps, i.e., the design of the combustion chamber and numerical analysis of the briquette combustion process through Computational Fluid Dynamics (CFD) simulations. Numerical analysis of the combustion process using three types of briquettes with different inorganic waste compositions, i.e., K1 type, K2 type, and K3 type. The research results explain the optimum design of the combustion chamber with a total length dimension of 220 mm, an inlet fuel section, and combustion chamber-syngas pipeline diameter of 50 mm and 75 mm, respectively. In addition, the dimensions of the primary air holes are 7 mm, and the secondary air holes are 5 mm. Type K1 briquettes are capable of producing syngas (kg/s) consisting of 6.9x10-13 CO, 3.04x10-31 H2, and  1.8x10-20 CH4. That syngas composition includes in the criteria of syngas in the microturbines gas that produce electric power of 2.3-2.5 kW. The conclusions explain that the combustion chamber can be added to the microturbine gas component, and K1 type briquette can be a solid fuel.
first_indexed 2024-04-12T14:36:41Z
format Article
id doaj.art-fda83668a6be4a74b2e595d13f4f4941
institution Directory Open Access Journal
issn 2338-1663
2477-6041
language English
last_indexed 2024-04-12T14:36:41Z
publishDate 2022-06-01
publisher University of Brawijaya
record_format Article
series Rekayasa Mesin
spelling doaj.art-fda83668a6be4a74b2e595d13f4f49412022-12-22T03:29:04ZengUniversity of BrawijayaRekayasa Mesin2338-16632477-60412022-06-0113115317010.21776/ub.jrm.2022.013.01.16761DESAIN DAN ANALISIS NUMERIK RUANG BAKAR BRIKET SAMPAH ANORGANIK UNTUK PENGAPLIKASIAN PADA MIKROTURBIN GASErlanda A Pane0Eko Prasetyo1Rudi Hermawan2David H Gouwin3Universitas PancasilaUniversitas PancasilaUniversitas PancasilaUniversitas PancasilaThe utilization of briquettes as a source of electricity generation is still low due to the briquette characteristics that have high moisture content. This research analyzes the briquette's potential as a source of electrical energy by utilizing its syngas with microturbine gas. The high quality of syngas can be reached by the optimal combustion chamber design. Therefore, the research aim is to be able to design the optimum combustion chamber for the briquette combustion process to generate the syngas. This research method uses two steps, i.e., the design of the combustion chamber and numerical analysis of the briquette combustion process through Computational Fluid Dynamics (CFD) simulations. Numerical analysis of the combustion process using three types of briquettes with different inorganic waste compositions, i.e., K1 type, K2 type, and K3 type. The research results explain the optimum design of the combustion chamber with a total length dimension of 220 mm, an inlet fuel section, and combustion chamber-syngas pipeline diameter of 50 mm and 75 mm, respectively. In addition, the dimensions of the primary air holes are 7 mm, and the secondary air holes are 5 mm. Type K1 briquettes are capable of producing syngas (kg/s) consisting of 6.9x10-13 CO, 3.04x10-31 H2, and  1.8x10-20 CH4. That syngas composition includes in the criteria of syngas in the microturbines gas that produce electric power of 2.3-2.5 kW. The conclusions explain that the combustion chamber can be added to the microturbine gas component, and K1 type briquette can be a solid fuel.https://rekayasamesin.ub.ac.id/index.php/rm/article/view/1016briquettecfdcombustion chamberinorganic wastesyngas
spellingShingle Erlanda A Pane
Eko Prasetyo
Rudi Hermawan
David H Gouwin
DESAIN DAN ANALISIS NUMERIK RUANG BAKAR BRIKET SAMPAH ANORGANIK UNTUK PENGAPLIKASIAN PADA MIKROTURBIN GAS
Rekayasa Mesin
briquette
cfd
combustion chamber
inorganic waste
syngas
title DESAIN DAN ANALISIS NUMERIK RUANG BAKAR BRIKET SAMPAH ANORGANIK UNTUK PENGAPLIKASIAN PADA MIKROTURBIN GAS
title_full DESAIN DAN ANALISIS NUMERIK RUANG BAKAR BRIKET SAMPAH ANORGANIK UNTUK PENGAPLIKASIAN PADA MIKROTURBIN GAS
title_fullStr DESAIN DAN ANALISIS NUMERIK RUANG BAKAR BRIKET SAMPAH ANORGANIK UNTUK PENGAPLIKASIAN PADA MIKROTURBIN GAS
title_full_unstemmed DESAIN DAN ANALISIS NUMERIK RUANG BAKAR BRIKET SAMPAH ANORGANIK UNTUK PENGAPLIKASIAN PADA MIKROTURBIN GAS
title_short DESAIN DAN ANALISIS NUMERIK RUANG BAKAR BRIKET SAMPAH ANORGANIK UNTUK PENGAPLIKASIAN PADA MIKROTURBIN GAS
title_sort desain dan analisis numerik ruang bakar briket sampah anorganik untuk pengaplikasian pada mikroturbin gas
topic briquette
cfd
combustion chamber
inorganic waste
syngas
url https://rekayasamesin.ub.ac.id/index.php/rm/article/view/1016
work_keys_str_mv AT erlandaapane desaindananalisisnumerikruangbakarbriketsampahanorganikuntukpengaplikasianpadamikroturbingas
AT ekoprasetyo desaindananalisisnumerikruangbakarbriketsampahanorganikuntukpengaplikasianpadamikroturbingas
AT rudihermawan desaindananalisisnumerikruangbakarbriketsampahanorganikuntukpengaplikasianpadamikroturbingas
AT davidhgouwin desaindananalisisnumerikruangbakarbriketsampahanorganikuntukpengaplikasianpadamikroturbingas