Multimorbidity patterns with K-means nonhierarchical cluster analysis

Abstract Background The purpose of this study was to ascertain multimorbidity patterns using a non-hierarchical cluster analysis in adult primary patients with multimorbidity attended in primary care centers in Catalonia. Methods Cross-sectional study using electronic health records from 523,656 pat...

Full description

Bibliographic Details
Main Authors: Concepción Violán, Albert Roso-Llorach, Quintí Foguet-Boreu, Marina Guisado-Clavero, Mariona Pons-Vigués, Enriqueta Pujol-Ribera, Jose M. Valderas
Format: Article
Language:English
Published: BMC 2018-07-01
Series:BMC Family Practice
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12875-018-0790-x
_version_ 1828827746090876928
author Concepción Violán
Albert Roso-Llorach
Quintí Foguet-Boreu
Marina Guisado-Clavero
Mariona Pons-Vigués
Enriqueta Pujol-Ribera
Jose M. Valderas
author_facet Concepción Violán
Albert Roso-Llorach
Quintí Foguet-Boreu
Marina Guisado-Clavero
Mariona Pons-Vigués
Enriqueta Pujol-Ribera
Jose M. Valderas
author_sort Concepción Violán
collection DOAJ
description Abstract Background The purpose of this study was to ascertain multimorbidity patterns using a non-hierarchical cluster analysis in adult primary patients with multimorbidity attended in primary care centers in Catalonia. Methods Cross-sectional study using electronic health records from 523,656 patients, aged 45–64 years in 274 primary health care teams in 2010 in Catalonia, Spain. Data were provided by the Information System for the Development of Research in Primary Care (SIDIAP), a population database. Diagnoses were extracted using 241 blocks of diseases (International Classification of Diseases, version 10). Multimorbidity patterns were identified using two steps: 1) multiple correspondence analysis and 2) k-means clustering. Analysis was stratified by sex. Results The 408,994 patients who met multimorbidity criteria were included in the analysis (mean age, 54.2 years [Standard deviation, SD: 5.8], 53.3% women). Six multimorbidity patterns were obtained for each sex; the three most prevalent included 68% of the women and 66% of the men, respectively. The top cluster included coincident diseases in both men and women: Metabolic disorders, Hypertensive diseases, Mental and behavioural disorders due to psychoactive substance use, Other dorsopathies, and Other soft tissue disorders. Conclusion Non-hierarchical cluster analysis identified multimorbidity patterns consistent with clinical practice, identifying phenotypic subgroups of patients.
first_indexed 2024-12-12T15:07:30Z
format Article
id doaj.art-fda8c79805554acba49b9c8913baeaba
institution Directory Open Access Journal
issn 1471-2296
language English
last_indexed 2024-12-12T15:07:30Z
publishDate 2018-07-01
publisher BMC
record_format Article
series BMC Family Practice
spelling doaj.art-fda8c79805554acba49b9c8913baeaba2022-12-22T00:20:42ZengBMCBMC Family Practice1471-22962018-07-0119111110.1186/s12875-018-0790-xMultimorbidity patterns with K-means nonhierarchical cluster analysisConcepción Violán0Albert Roso-Llorach1Quintí Foguet-Boreu2Marina Guisado-Clavero3Mariona Pons-Vigués4Enriqueta Pujol-Ribera5Jose M. Valderas6Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol)Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol)Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol)Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol)Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol)Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol)Health Services & Policy Research Group, Academic Collaboration for Primary Care, University of Exeter Medical SchoolAbstract Background The purpose of this study was to ascertain multimorbidity patterns using a non-hierarchical cluster analysis in adult primary patients with multimorbidity attended in primary care centers in Catalonia. Methods Cross-sectional study using electronic health records from 523,656 patients, aged 45–64 years in 274 primary health care teams in 2010 in Catalonia, Spain. Data were provided by the Information System for the Development of Research in Primary Care (SIDIAP), a population database. Diagnoses were extracted using 241 blocks of diseases (International Classification of Diseases, version 10). Multimorbidity patterns were identified using two steps: 1) multiple correspondence analysis and 2) k-means clustering. Analysis was stratified by sex. Results The 408,994 patients who met multimorbidity criteria were included in the analysis (mean age, 54.2 years [Standard deviation, SD: 5.8], 53.3% women). Six multimorbidity patterns were obtained for each sex; the three most prevalent included 68% of the women and 66% of the men, respectively. The top cluster included coincident diseases in both men and women: Metabolic disorders, Hypertensive diseases, Mental and behavioural disorders due to psychoactive substance use, Other dorsopathies, and Other soft tissue disorders. Conclusion Non-hierarchical cluster analysis identified multimorbidity patterns consistent with clinical practice, identifying phenotypic subgroups of patients.http://link.springer.com/article/10.1186/s12875-018-0790-xMultimorbidityCluster analysisMultiple correspondence analysisK-means clusteringPrimary health careElectronic health records
spellingShingle Concepción Violán
Albert Roso-Llorach
Quintí Foguet-Boreu
Marina Guisado-Clavero
Mariona Pons-Vigués
Enriqueta Pujol-Ribera
Jose M. Valderas
Multimorbidity patterns with K-means nonhierarchical cluster analysis
BMC Family Practice
Multimorbidity
Cluster analysis
Multiple correspondence analysis
K-means clustering
Primary health care
Electronic health records
title Multimorbidity patterns with K-means nonhierarchical cluster analysis
title_full Multimorbidity patterns with K-means nonhierarchical cluster analysis
title_fullStr Multimorbidity patterns with K-means nonhierarchical cluster analysis
title_full_unstemmed Multimorbidity patterns with K-means nonhierarchical cluster analysis
title_short Multimorbidity patterns with K-means nonhierarchical cluster analysis
title_sort multimorbidity patterns with k means nonhierarchical cluster analysis
topic Multimorbidity
Cluster analysis
Multiple correspondence analysis
K-means clustering
Primary health care
Electronic health records
url http://link.springer.com/article/10.1186/s12875-018-0790-x
work_keys_str_mv AT concepcionviolan multimorbiditypatternswithkmeansnonhierarchicalclusteranalysis
AT albertrosollorach multimorbiditypatternswithkmeansnonhierarchicalclusteranalysis
AT quintifoguetboreu multimorbiditypatternswithkmeansnonhierarchicalclusteranalysis
AT marinaguisadoclavero multimorbiditypatternswithkmeansnonhierarchicalclusteranalysis
AT marionaponsvigues multimorbiditypatternswithkmeansnonhierarchicalclusteranalysis
AT enriquetapujolribera multimorbiditypatternswithkmeansnonhierarchicalclusteranalysis
AT josemvalderas multimorbiditypatternswithkmeansnonhierarchicalclusteranalysis