Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing

<p>The Madden–Julian Oscillation (MJO) is a major source of predictability on the sub-seasonal (10 to 90 d) timescale. An improved forecast of the MJO may have important socioeconomic impacts due to the influence of MJO on both tropical and extratropical weather extremes. Although in the last...

Full description

Bibliographic Details
Main Authors: R. Silini, S. Lerch, N. Mastrantonas, H. Kantz, M. Barreiro, C. Masoller
Format: Article
Language:English
Published: Copernicus Publications 2022-08-01
Series:Earth System Dynamics
Online Access:https://esd.copernicus.org/articles/13/1157/2022/esd-13-1157-2022.pdf
_version_ 1828433846483288064
author R. Silini
S. Lerch
N. Mastrantonas
N. Mastrantonas
H. Kantz
M. Barreiro
C. Masoller
author_facet R. Silini
S. Lerch
N. Mastrantonas
N. Mastrantonas
H. Kantz
M. Barreiro
C. Masoller
author_sort R. Silini
collection DOAJ
description <p>The Madden–Julian Oscillation (MJO) is a major source of predictability on the sub-seasonal (10 to 90 d) timescale. An improved forecast of the MJO may have important socioeconomic impacts due to the influence of MJO on both tropical and extratropical weather extremes. Although in the last decades state-of-the-art climate models have proved their capability for forecasting the MJO exceeding the 5-week prediction skill, there is still room for improving the prediction. In this study we use multiple linear regression (MLR) and a machine learning (ML) algorithm as post-processing methods to improve the forecast of the model that currently holds the best MJO forecasting performance, the European Centre for Medium-Range Weather Forecasts (ECMWF) model. We find that both MLR and ML improve the MJO prediction and that ML outperforms MLR. The largest improvement is in the prediction of the MJO geographical location and intensity.</p>
first_indexed 2024-12-10T18:41:22Z
format Article
id doaj.art-fdafe5ceaeec4960a7514b80bf01cede
institution Directory Open Access Journal
issn 2190-4979
2190-4987
language English
last_indexed 2024-12-10T18:41:22Z
publishDate 2022-08-01
publisher Copernicus Publications
record_format Article
series Earth System Dynamics
spelling doaj.art-fdafe5ceaeec4960a7514b80bf01cede2022-12-22T01:37:39ZengCopernicus PublicationsEarth System Dynamics2190-49792190-49872022-08-01131157116510.5194/esd-13-1157-2022Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processingR. Silini0S. Lerch1N. Mastrantonas2N. Mastrantonas3H. Kantz4M. Barreiro5C. Masoller6Departament de Física, Universitat Politècnica de Catalunya, Sant Nebridi 22, 08222 Terrassa, Barcelona, SpainInstitute of Economics, Karlsruhe Institute of Technology, Blücherstr. 17, 76185 Karlsruhe, GermanyEuropean Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UKInterdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg (TUBAF), Freiberg, GermanyMax Planck Institute for the Physics of Complex Systems, 01187 Dresden, GermanyDepartamento de Ciencias de la Atmósfera, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, UruguayDepartament de Física, Universitat Politècnica de Catalunya, Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain<p>The Madden–Julian Oscillation (MJO) is a major source of predictability on the sub-seasonal (10 to 90 d) timescale. An improved forecast of the MJO may have important socioeconomic impacts due to the influence of MJO on both tropical and extratropical weather extremes. Although in the last decades state-of-the-art climate models have proved their capability for forecasting the MJO exceeding the 5-week prediction skill, there is still room for improving the prediction. In this study we use multiple linear regression (MLR) and a machine learning (ML) algorithm as post-processing methods to improve the forecast of the model that currently holds the best MJO forecasting performance, the European Centre for Medium-Range Weather Forecasts (ECMWF) model. We find that both MLR and ML improve the MJO prediction and that ML outperforms MLR. The largest improvement is in the prediction of the MJO geographical location and intensity.</p>https://esd.copernicus.org/articles/13/1157/2022/esd-13-1157-2022.pdf
spellingShingle R. Silini
S. Lerch
N. Mastrantonas
N. Mastrantonas
H. Kantz
M. Barreiro
C. Masoller
Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing
Earth System Dynamics
title Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing
title_full Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing
title_fullStr Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing
title_full_unstemmed Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing
title_short Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing
title_sort improving the prediction of the madden julian oscillation of the ecmwf model by post processing
url https://esd.copernicus.org/articles/13/1157/2022/esd-13-1157-2022.pdf
work_keys_str_mv AT rsilini improvingthepredictionofthemaddenjulianoscillationoftheecmwfmodelbypostprocessing
AT slerch improvingthepredictionofthemaddenjulianoscillationoftheecmwfmodelbypostprocessing
AT nmastrantonas improvingthepredictionofthemaddenjulianoscillationoftheecmwfmodelbypostprocessing
AT nmastrantonas improvingthepredictionofthemaddenjulianoscillationoftheecmwfmodelbypostprocessing
AT hkantz improvingthepredictionofthemaddenjulianoscillationoftheecmwfmodelbypostprocessing
AT mbarreiro improvingthepredictionofthemaddenjulianoscillationoftheecmwfmodelbypostprocessing
AT cmasoller improvingthepredictionofthemaddenjulianoscillationoftheecmwfmodelbypostprocessing