Comparison theorems and asymptotic behavior of solutions of discrete fractional equations

Consider the following $\nu$-th order nabla and delta fractional difference equations \begin{equation} \begin{aligned} \nabla^\nu_{\rho(a)}x(t)&=c(t)x(t),\quad \quad t\in\mathbb{N}_{a+1},\\ x(a)&>0. \end{aligned}\tag{$\ast$} \end{equation} and \begin{equation} \begin{aligned} \Delta^\nu...

Full description

Bibliographic Details
Main Authors: Baoguo Jia, Lynn Erbe, Allan Peterson
Format: Article
Language:English
Published: University of Szeged 2015-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4278
_version_ 1797830618391773184
author Baoguo Jia
Lynn Erbe
Allan Peterson
author_facet Baoguo Jia
Lynn Erbe
Allan Peterson
author_sort Baoguo Jia
collection DOAJ
description Consider the following $\nu$-th order nabla and delta fractional difference equations \begin{equation} \begin{aligned} \nabla^\nu_{\rho(a)}x(t)&=c(t)x(t),\quad \quad t\in\mathbb{N}_{a+1},\\ x(a)&>0. \end{aligned}\tag{$\ast$} \end{equation} and \begin{equation} \begin{aligned} \Delta^\nu_{a+\nu-1}x(t)&=c(t)x(t+\nu-1),\quad \quad t\in\mathbb{N}_{a},\\ x(a+\nu-1)&>0. \end{aligned}\tag{$\ast\ast$} \end{equation} We establish comparison theorems by which we compare the solutions $x(t)$ of ($\ast$) and ($\ast\ast$) with the solutions of the equations $\nabla^\nu_{\rho(a)}x(t)=bx(t)$ and $\Delta^\nu_{a+\nu-1}x(t)=bx(t+\nu-1),$ respectively, where $b$ is a constant. We obtain four asymptotic results, one of them extends the recent result [F. M. Atici, P. W. Eloe, Rocky Mountain J. Math. 41(2011) 353--370]. These results show that the solutions of two fractional difference equations $\nabla^\nu_{\rho(a)}x(t)=cx(t),\ 0<\nu<1$, and $\Delta^\nu_{a+\nu-1}x(t)=cx(t+\nu-1),\ 0<\nu<1$, have similar asymptotic behavior with the solutions of the first order difference equations $\nabla x(t)=cx(t),\ |c|<1 $ and $\Delta x(t)=cx(t)$, $|c|<1 $, respectively.
first_indexed 2024-04-09T13:38:58Z
format Article
id doaj.art-fdd4b2e36e844540a977c4d4e183eca8
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:38:58Z
publishDate 2015-12-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-fdd4b2e36e844540a977c4d4e183eca82023-05-09T07:53:05ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752015-12-0120158911810.14232/ejqtde.2015.1.894278Comparison theorems and asymptotic behavior of solutions of discrete fractional equationsBaoguo Jia0Lynn Erbe1Allan Peterson2Sun Yat-Sen University, Guangzhou, ChinaUniversity of Nebraska-Lincoln, Lincoln, USAUniversity of Nebraska-Lincoln, Lincoln, USAConsider the following $\nu$-th order nabla and delta fractional difference equations \begin{equation} \begin{aligned} \nabla^\nu_{\rho(a)}x(t)&=c(t)x(t),\quad \quad t\in\mathbb{N}_{a+1},\\ x(a)&>0. \end{aligned}\tag{$\ast$} \end{equation} and \begin{equation} \begin{aligned} \Delta^\nu_{a+\nu-1}x(t)&=c(t)x(t+\nu-1),\quad \quad t\in\mathbb{N}_{a},\\ x(a+\nu-1)&>0. \end{aligned}\tag{$\ast\ast$} \end{equation} We establish comparison theorems by which we compare the solutions $x(t)$ of ($\ast$) and ($\ast\ast$) with the solutions of the equations $\nabla^\nu_{\rho(a)}x(t)=bx(t)$ and $\Delta^\nu_{a+\nu-1}x(t)=bx(t+\nu-1),$ respectively, where $b$ is a constant. We obtain four asymptotic results, one of them extends the recent result [F. M. Atici, P. W. Eloe, Rocky Mountain J. Math. 41(2011) 353--370]. These results show that the solutions of two fractional difference equations $\nabla^\nu_{\rho(a)}x(t)=cx(t),\ 0<\nu<1$, and $\Delta^\nu_{a+\nu-1}x(t)=cx(t+\nu-1),\ 0<\nu<1$, have similar asymptotic behavior with the solutions of the first order difference equations $\nabla x(t)=cx(t),\ |c|<1 $ and $\Delta x(t)=cx(t)$, $|c|<1 $, respectively.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4278nabla and delta fractional differencediscrete mittag-leffler functionrising and falling function
spellingShingle Baoguo Jia
Lynn Erbe
Allan Peterson
Comparison theorems and asymptotic behavior of solutions of discrete fractional equations
Electronic Journal of Qualitative Theory of Differential Equations
nabla and delta fractional difference
discrete mittag-leffler function
rising and falling function
title Comparison theorems and asymptotic behavior of solutions of discrete fractional equations
title_full Comparison theorems and asymptotic behavior of solutions of discrete fractional equations
title_fullStr Comparison theorems and asymptotic behavior of solutions of discrete fractional equations
title_full_unstemmed Comparison theorems and asymptotic behavior of solutions of discrete fractional equations
title_short Comparison theorems and asymptotic behavior of solutions of discrete fractional equations
title_sort comparison theorems and asymptotic behavior of solutions of discrete fractional equations
topic nabla and delta fractional difference
discrete mittag-leffler function
rising and falling function
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4278
work_keys_str_mv AT baoguojia comparisontheoremsandasymptoticbehaviorofsolutionsofdiscretefractionalequations
AT lynnerbe comparisontheoremsandasymptoticbehaviorofsolutionsofdiscretefractionalequations
AT allanpeterson comparisontheoremsandasymptoticbehaviorofsolutionsofdiscretefractionalequations