Summary: | ABSTRACT: Endogenous retroviruses (ERV) are viral genomes integrated into the host genome and can be stably inherited. Although ERV sequences have been reported in some avian species’ genome, the duck endogenous retroviruses (DERV) genome has yet to be quantified. This study aimed to identify ERV sequences and characterize genes near ERVs in the duck genome by utilizing LTRhavest and LTRdigest tools to forecast the duck genome and analyze the distribution of ERV copies. The results revealed 1,607, 2,031, and 1,908 full-length ERV copies in the Pekin duck (ZJU1.0), Mallard (CAU_wild_1.0), and Shaoxing duck (CAU_laying_1.0) genomes, respectively, with average lengths of 7,046, 7,027, and 6,945 bp. ERVs are mainly distributed on the 1, 2, and sex chromosomes. Phylogenetic analysis demonstrated the presence of Betaretrovirus in 3 duck genomes, whereas Alpharetrovirus was exclusively identified in the Shaoxing duck genome. Through screening, 596, 315, and 343 genes adjacent to ERV were identified in 3 duck genomes, respectively, and their functions of ERV neighboring genes were predicted. Functional enrichment analysis of ERV-adjacent genes revealed enrichment for Focal adhesion, Calcium signaling pathway, and Adherens junction in 3 duck genomes. The overlapped genes were highly expressed in 8 tissues (brain, fat, heart, kidney, liver, lung, skin, and spleen) of 8-wk-old Mallard, revealing their important expression in different tissues. Our study provides a new perspective for understanding the quantity and function of DERVs, and may also provide important clues for regulating nearby genes and affecting the traits of organisms.
|