Regularity results for p-Laplacians in pre-fractal domains

We study obstacle problems involving p-Laplace-type operators in non-convex polygons. We establish regularity results in terms of weighted Sobolev spaces. As applications, we obtain estimates for the FEM approximation for obstacle problems in pre-fractal Koch Islands.

Bibliographic Details
Main Authors: Capitanelli Raffaela, Fragapane Salvatore, Vivaldi Maria Agostina
Format: Article
Language:English
Published: De Gruyter 2018-06-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2017-0248
_version_ 1818738492526559232
author Capitanelli Raffaela
Fragapane Salvatore
Vivaldi Maria Agostina
author_facet Capitanelli Raffaela
Fragapane Salvatore
Vivaldi Maria Agostina
author_sort Capitanelli Raffaela
collection DOAJ
description We study obstacle problems involving p-Laplace-type operators in non-convex polygons. We establish regularity results in terms of weighted Sobolev spaces. As applications, we obtain estimates for the FEM approximation for obstacle problems in pre-fractal Koch Islands.
first_indexed 2024-12-18T01:09:48Z
format Article
id doaj.art-fddaa5514f414dad80f8a4f636e3dd3b
institution Directory Open Access Journal
issn 2191-9496
2191-950X
language English
last_indexed 2024-12-18T01:09:48Z
publishDate 2018-06-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj.art-fddaa5514f414dad80f8a4f636e3dd3b2022-12-21T21:26:09ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2018-06-01811043105610.1515/anona-2017-0248anona-2017-0248Regularity results for p-Laplacians in pre-fractal domainsCapitanelli Raffaela0Fragapane Salvatore1Vivaldi Maria Agostina2Dipartimento di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” Università di Roma, Via A. Scarpa 16, 00161Roma, ItalyDipartimento di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” Università di Roma, Via A. Scarpa 16, 00161Roma, ItalyDipartimento di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” Università di Roma, Via A. Scarpa 16, 00161Roma, ItalyWe study obstacle problems involving p-Laplace-type operators in non-convex polygons. We establish regularity results in terms of weighted Sobolev spaces. As applications, we obtain estimates for the FEM approximation for obstacle problems in pre-fractal Koch Islands.https://doi.org/10.1515/anona-2017-0248degenerate elliptic equationssmoothness and regularity of solutionsfemfractals35j70 35b65 65n30 28a80
spellingShingle Capitanelli Raffaela
Fragapane Salvatore
Vivaldi Maria Agostina
Regularity results for p-Laplacians in pre-fractal domains
Advances in Nonlinear Analysis
degenerate elliptic equations
smoothness and regularity of solutions
fem
fractals
35j70
35b65
65n30
28a80
title Regularity results for p-Laplacians in pre-fractal domains
title_full Regularity results for p-Laplacians in pre-fractal domains
title_fullStr Regularity results for p-Laplacians in pre-fractal domains
title_full_unstemmed Regularity results for p-Laplacians in pre-fractal domains
title_short Regularity results for p-Laplacians in pre-fractal domains
title_sort regularity results for p laplacians in pre fractal domains
topic degenerate elliptic equations
smoothness and regularity of solutions
fem
fractals
35j70
35b65
65n30
28a80
url https://doi.org/10.1515/anona-2017-0248
work_keys_str_mv AT capitanelliraffaela regularityresultsforplaplaciansinprefractaldomains
AT fragapanesalvatore regularityresultsforplaplaciansinprefractaldomains
AT vivaldimariaagostina regularityresultsforplaplaciansinprefractaldomains