Regularity results for p-Laplacians in pre-fractal domains
We study obstacle problems involving p-Laplace-type operators in non-convex polygons. We establish regularity results in terms of weighted Sobolev spaces. As applications, we obtain estimates for the FEM approximation for obstacle problems in pre-fractal Koch Islands.
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-06-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2017-0248 |
_version_ | 1818738492526559232 |
---|---|
author | Capitanelli Raffaela Fragapane Salvatore Vivaldi Maria Agostina |
author_facet | Capitanelli Raffaela Fragapane Salvatore Vivaldi Maria Agostina |
author_sort | Capitanelli Raffaela |
collection | DOAJ |
description | We study obstacle problems involving p-Laplace-type operators in non-convex polygons.
We establish regularity results in terms of weighted Sobolev spaces. As applications, we obtain estimates for the FEM approximation for obstacle problems in pre-fractal Koch Islands. |
first_indexed | 2024-12-18T01:09:48Z |
format | Article |
id | doaj.art-fddaa5514f414dad80f8a4f636e3dd3b |
institution | Directory Open Access Journal |
issn | 2191-9496 2191-950X |
language | English |
last_indexed | 2024-12-18T01:09:48Z |
publishDate | 2018-06-01 |
publisher | De Gruyter |
record_format | Article |
series | Advances in Nonlinear Analysis |
spelling | doaj.art-fddaa5514f414dad80f8a4f636e3dd3b2022-12-21T21:26:09ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2018-06-01811043105610.1515/anona-2017-0248anona-2017-0248Regularity results for p-Laplacians in pre-fractal domainsCapitanelli Raffaela0Fragapane Salvatore1Vivaldi Maria Agostina2Dipartimento di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” Università di Roma, Via A. Scarpa 16, 00161Roma, ItalyDipartimento di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” Università di Roma, Via A. Scarpa 16, 00161Roma, ItalyDipartimento di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” Università di Roma, Via A. Scarpa 16, 00161Roma, ItalyWe study obstacle problems involving p-Laplace-type operators in non-convex polygons. We establish regularity results in terms of weighted Sobolev spaces. As applications, we obtain estimates for the FEM approximation for obstacle problems in pre-fractal Koch Islands.https://doi.org/10.1515/anona-2017-0248degenerate elliptic equationssmoothness and regularity of solutionsfemfractals35j70 35b65 65n30 28a80 |
spellingShingle | Capitanelli Raffaela Fragapane Salvatore Vivaldi Maria Agostina Regularity results for p-Laplacians in pre-fractal domains Advances in Nonlinear Analysis degenerate elliptic equations smoothness and regularity of solutions fem fractals 35j70 35b65 65n30 28a80 |
title | Regularity results for p-Laplacians in pre-fractal domains |
title_full | Regularity results for p-Laplacians in pre-fractal domains |
title_fullStr | Regularity results for p-Laplacians in pre-fractal domains |
title_full_unstemmed | Regularity results for p-Laplacians in pre-fractal domains |
title_short | Regularity results for p-Laplacians in pre-fractal domains |
title_sort | regularity results for p laplacians in pre fractal domains |
topic | degenerate elliptic equations smoothness and regularity of solutions fem fractals 35j70 35b65 65n30 28a80 |
url | https://doi.org/10.1515/anona-2017-0248 |
work_keys_str_mv | AT capitanelliraffaela regularityresultsforplaplaciansinprefractaldomains AT fragapanesalvatore regularityresultsforplaplaciansinprefractaldomains AT vivaldimariaagostina regularityresultsforplaplaciansinprefractaldomains |