Three-particle system in a finite volume: formalism, quantization condition, spectrum and energy shift

Lattice QCD calculations provide an ab initio access to hadronic process. These calculations are usu ally performed in a small cubic volume with periodic boundary conditions. The infinite volume extrapolations for three-body systems are indispensable to understand many systems of high current intere...

Full description

Bibliographic Details
Main Author: Pang Jin-Yi
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2020/17/epjconf_nstar2020_02005.pdf
Description
Summary:Lattice QCD calculations provide an ab initio access to hadronic process. These calculations are usu ally performed in a small cubic volume with periodic boundary conditions. The infinite volume extrapolations for three-body systems are indispensable to understand many systems of high current interest. We derive the three-body quantization condition in a finite volume using an effective field theory in the particle-dimer picture. Our work shows a powerful and transparent method to read off three-body physical observables from lattice simulations. In this paper, we review the formalism, quantization condition, spectrum analysis and energy shifts calculation both for 3-body bound states and scattering states.
ISSN:2100-014X