Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator <i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-Preinvex Functions

In this work, we obtain some new integral inequalities of the Hermite–Hadamard–Fejér type for operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close="...

Full description

Bibliographic Details
Main Authors: Sikander Mehmood, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Fiza Zafar, Kamsing Nonlaopon
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/1/16
_version_ 1797446185428975616
author Sikander Mehmood
Hari Mohan Srivastava
Pshtiwan Othman Mohammed
Eman Al-Sarairah
Fiza Zafar
Kamsing Nonlaopon
author_facet Sikander Mehmood
Hari Mohan Srivastava
Pshtiwan Othman Mohammed
Eman Al-Sarairah
Fiza Zafar
Kamsing Nonlaopon
author_sort Sikander Mehmood
collection DOAJ
description In this work, we obtain some new integral inequalities of the Hermite–Hadamard–Fejér type for operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><msub><mi>ω</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ω</mi><mn>2</mn></msub></mfenced></semantics></math></inline-formula>-preinvex functions. The bounds for both left-hand and right-hand sides of the integral inequality are established for operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><msub><mi>ω</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ω</mi><mn>2</mn></msub></mfenced></semantics></math></inline-formula>-preinvex functions of the positive self-adjoint operator in the complex Hilbert spaces. We give the special cases to our results; thus, the established results are generalizations of earlier work. In the last section, we give applications for synchronous (asynchronous) functions.
first_indexed 2024-03-09T13:37:43Z
format Article
id doaj.art-fde5343aef844cedaaf23c4a97888aa7
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T13:37:43Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-fde5343aef844cedaaf23c4a97888aa72023-11-30T21:11:08ZengMDPI AGAxioms2075-16802022-12-011211610.3390/axioms12010016Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator <i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-Preinvex FunctionsSikander Mehmood0Hari Mohan Srivastava1Pshtiwan Othman Mohammed2Eman Al-Sarairah3Fiza Zafar4Kamsing Nonlaopon5Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60800, PakistanDepartment of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaDepartment of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, IraqDepartment of Mathematics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab EmiratesCentre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60800, PakistanDepartment of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, ThailandIn this work, we obtain some new integral inequalities of the Hermite–Hadamard–Fejér type for operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><msub><mi>ω</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ω</mi><mn>2</mn></msub></mfenced></semantics></math></inline-formula>-preinvex functions. The bounds for both left-hand and right-hand sides of the integral inequality are established for operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><msub><mi>ω</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ω</mi><mn>2</mn></msub></mfenced></semantics></math></inline-formula>-preinvex functions of the positive self-adjoint operator in the complex Hilbert spaces. We give the special cases to our results; thus, the established results are generalizations of earlier work. In the last section, we give applications for synchronous (asynchronous) functions.https://www.mdpi.com/2075-1680/12/1/16Hermite–Hadamard inequalitiesHermite–Hadamard–Fejér inequalities<i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-preinvexityself-adjoint operatorspositive operatorsfunctions of self-adjoint operators
spellingShingle Sikander Mehmood
Hari Mohan Srivastava
Pshtiwan Othman Mohammed
Eman Al-Sarairah
Fiza Zafar
Kamsing Nonlaopon
Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator <i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-Preinvex Functions
Axioms
Hermite–Hadamard inequalities
Hermite–Hadamard–Fejér inequalities
<i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-preinvexity
self-adjoint operators
positive operators
functions of self-adjoint operators
title Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator <i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-Preinvex Functions
title_full Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator <i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-Preinvex Functions
title_fullStr Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator <i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-Preinvex Functions
title_full_unstemmed Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator <i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-Preinvex Functions
title_short Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator <i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-Preinvex Functions
title_sort fejer type midpoint and trapezoidal inequalities for the operator i ω i sub 1 sub i ω i sub 2 sub preinvex functions
topic Hermite–Hadamard inequalities
Hermite–Hadamard–Fejér inequalities
<i>ω</i><sub>1</sub>,<i>ω</i><sub>2</sub>-preinvexity
self-adjoint operators
positive operators
functions of self-adjoint operators
url https://www.mdpi.com/2075-1680/12/1/16
work_keys_str_mv AT sikandermehmood fejertypemidpointandtrapezoidalinequalitiesfortheoperatoriōisub1subiōisub2subpreinvexfunctions
AT harimohansrivastava fejertypemidpointandtrapezoidalinequalitiesfortheoperatoriōisub1subiōisub2subpreinvexfunctions
AT pshtiwanothmanmohammed fejertypemidpointandtrapezoidalinequalitiesfortheoperatoriōisub1subiōisub2subpreinvexfunctions
AT emanalsarairah fejertypemidpointandtrapezoidalinequalitiesfortheoperatoriōisub1subiōisub2subpreinvexfunctions
AT fizazafar fejertypemidpointandtrapezoidalinequalitiesfortheoperatoriōisub1subiōisub2subpreinvexfunctions
AT kamsingnonlaopon fejertypemidpointandtrapezoidalinequalitiesfortheoperatoriōisub1subiōisub2subpreinvexfunctions