Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates
Superhydrophilic and superhydrophobic substrates are widely known to inhibit the attachment of a variety of motile and/or nonmotile bacteria. However, the thermodynamics of attachment are complex. Surface energy measurements alone do not address the complexities of colloidal (i.e., bacterial) disper...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Pharmaceuticals |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8247/14/10/977 |
_version_ | 1797513524406124544 |
---|---|
author | T. Brian Cavitt Niyati Pathak |
author_facet | T. Brian Cavitt Niyati Pathak |
author_sort | T. Brian Cavitt |
collection | DOAJ |
description | Superhydrophilic and superhydrophobic substrates are widely known to inhibit the attachment of a variety of motile and/or nonmotile bacteria. However, the thermodynamics of attachment are complex. Surface energy measurements alone do not address the complexities of colloidal (i.e., bacterial) dispersions but do affirm that polar (acid-base) interactions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula>) are often more significant than nonpolar (Lifshitz-van der Waals) interactions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>L</mi><mi>W</mi></mrow></msup></mrow></semantics></math></inline-formula>). Classical DLVO theory alone also fails to address all colloidal interactions present in bacterial dispersions such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula> and Born repulsion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>B</mi><mi>o</mi><mi>r</mi><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>) yet accounts for the significant electrostatic double layer repulsion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>E</mi><mi>L</mi></mrow></msup></mrow></semantics></math></inline-formula>). We purpose to model both motile (e.g., <i>P. aeruginosa</i> and <i>E. coli</i>) and nonmotile (e.g., <i>S. aureus</i> and <i>S. epidermidis</i>) bacterial attachment to both superhydrophilic and superhydrophobic substrates via surface energies and extended DLVO theory corrected for bacterial geometries. We used extended DLVO theory and surface energy analyses to characterize the following Gibbs interaction energies for the bacteria with superhydrophobic and superhydrophilic substrates: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>L</mi><mi>W</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>E</mi><mi>L</mi></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>B</mi><mi>o</mi><mi>r</mi><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>. The combination of the aforementioned interactions yields the total Gibbs interaction energy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow></msup></mrow></semantics></math></inline-formula>) of each bacterium with each substrate. Analysis of the interaction energies with respect to the distance of approach yielded an equilibrium distance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula>) that seems to be independent of both bacterial species and substrate. Utilizing both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula> and Gibbs interaction energies, substrates could be designed to inhibit bacterial attachment. |
first_indexed | 2024-03-10T06:17:47Z |
format | Article |
id | doaj.art-fdf55a7b932340f0b285acb85c27a6dc |
institution | Directory Open Access Journal |
issn | 1424-8247 |
language | English |
last_indexed | 2024-03-10T06:17:47Z |
publishDate | 2021-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Pharmaceuticals |
spelling | doaj.art-fdf55a7b932340f0b285acb85c27a6dc2023-11-22T19:35:26ZengMDPI AGPharmaceuticals1424-82472021-09-01141097710.3390/ph14100977Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic SubstratesT. Brian Cavitt0Niyati Pathak1Department of Chemistry and Biochemistry, Lipscomb University, One University Park Drive, Nashville, TN 37204, USADepartment of Chemistry and Biochemistry, Lipscomb University, One University Park Drive, Nashville, TN 37204, USASuperhydrophilic and superhydrophobic substrates are widely known to inhibit the attachment of a variety of motile and/or nonmotile bacteria. However, the thermodynamics of attachment are complex. Surface energy measurements alone do not address the complexities of colloidal (i.e., bacterial) dispersions but do affirm that polar (acid-base) interactions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula>) are often more significant than nonpolar (Lifshitz-van der Waals) interactions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>L</mi><mi>W</mi></mrow></msup></mrow></semantics></math></inline-formula>). Classical DLVO theory alone also fails to address all colloidal interactions present in bacterial dispersions such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula> and Born repulsion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>B</mi><mi>o</mi><mi>r</mi><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>) yet accounts for the significant electrostatic double layer repulsion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>E</mi><mi>L</mi></mrow></msup></mrow></semantics></math></inline-formula>). We purpose to model both motile (e.g., <i>P. aeruginosa</i> and <i>E. coli</i>) and nonmotile (e.g., <i>S. aureus</i> and <i>S. epidermidis</i>) bacterial attachment to both superhydrophilic and superhydrophobic substrates via surface energies and extended DLVO theory corrected for bacterial geometries. We used extended DLVO theory and surface energy analyses to characterize the following Gibbs interaction energies for the bacteria with superhydrophobic and superhydrophilic substrates: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>L</mi><mi>W</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>E</mi><mi>L</mi></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>B</mi><mi>o</mi><mi>r</mi><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>. The combination of the aforementioned interactions yields the total Gibbs interaction energy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow></msup></mrow></semantics></math></inline-formula>) of each bacterium with each substrate. Analysis of the interaction energies with respect to the distance of approach yielded an equilibrium distance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula>) that seems to be independent of both bacterial species and substrate. Utilizing both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula> and Gibbs interaction energies, substrates could be designed to inhibit bacterial attachment.https://www.mdpi.com/1424-8247/14/10/977bacterial-substrate interactionGibbs interaction energysurface energyextended DLVO theorysuperhydrophobicsuperhydrophilic |
spellingShingle | T. Brian Cavitt Niyati Pathak Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates Pharmaceuticals bacterial-substrate interaction Gibbs interaction energy surface energy extended DLVO theory superhydrophobic superhydrophilic |
title | Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates |
title_full | Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates |
title_fullStr | Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates |
title_full_unstemmed | Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates |
title_short | Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates |
title_sort | modeling bacterial attachment mechanisms on superhydrophobic and superhydrophilic substrates |
topic | bacterial-substrate interaction Gibbs interaction energy surface energy extended DLVO theory superhydrophobic superhydrophilic |
url | https://www.mdpi.com/1424-8247/14/10/977 |
work_keys_str_mv | AT tbriancavitt modelingbacterialattachmentmechanismsonsuperhydrophobicandsuperhydrophilicsubstrates AT niyatipathak modelingbacterialattachmentmechanismsonsuperhydrophobicandsuperhydrophilicsubstrates |