Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates

Superhydrophilic and superhydrophobic substrates are widely known to inhibit the attachment of a variety of motile and/or nonmotile bacteria. However, the thermodynamics of attachment are complex. Surface energy measurements alone do not address the complexities of colloidal (i.e., bacterial) disper...

Full description

Bibliographic Details
Main Authors: T. Brian Cavitt, Niyati Pathak
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Pharmaceuticals
Subjects:
Online Access:https://www.mdpi.com/1424-8247/14/10/977
_version_ 1797513524406124544
author T. Brian Cavitt
Niyati Pathak
author_facet T. Brian Cavitt
Niyati Pathak
author_sort T. Brian Cavitt
collection DOAJ
description Superhydrophilic and superhydrophobic substrates are widely known to inhibit the attachment of a variety of motile and/or nonmotile bacteria. However, the thermodynamics of attachment are complex. Surface energy measurements alone do not address the complexities of colloidal (i.e., bacterial) dispersions but do affirm that polar (acid-base) interactions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula>) are often more significant than nonpolar (Lifshitz-van der Waals) interactions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>L</mi><mi>W</mi></mrow></msup></mrow></semantics></math></inline-formula>). Classical DLVO theory alone also fails to address all colloidal interactions present in bacterial dispersions such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula> and Born repulsion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>B</mi><mi>o</mi><mi>r</mi><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>) yet accounts for the significant electrostatic double layer repulsion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>E</mi><mi>L</mi></mrow></msup></mrow></semantics></math></inline-formula>). We purpose to model both motile (e.g., <i>P. aeruginosa</i> and <i>E. coli</i>) and nonmotile (e.g., <i>S. aureus</i> and <i>S. epidermidis</i>) bacterial attachment to both superhydrophilic and superhydrophobic substrates via surface energies and extended DLVO theory corrected for bacterial geometries. We used extended DLVO theory and surface energy analyses to characterize the following Gibbs interaction energies for the bacteria with superhydrophobic and superhydrophilic substrates: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>L</mi><mi>W</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>E</mi><mi>L</mi></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>B</mi><mi>o</mi><mi>r</mi><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>. The combination of the aforementioned interactions yields the total Gibbs interaction energy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow></msup></mrow></semantics></math></inline-formula>) of each bacterium with each substrate. Analysis of the interaction energies with respect to the distance of approach yielded an equilibrium distance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula>) that seems to be independent of both bacterial species and substrate. Utilizing both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula> and Gibbs interaction energies, substrates could be designed to inhibit bacterial attachment.
first_indexed 2024-03-10T06:17:47Z
format Article
id doaj.art-fdf55a7b932340f0b285acb85c27a6dc
institution Directory Open Access Journal
issn 1424-8247
language English
last_indexed 2024-03-10T06:17:47Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Pharmaceuticals
spelling doaj.art-fdf55a7b932340f0b285acb85c27a6dc2023-11-22T19:35:26ZengMDPI AGPharmaceuticals1424-82472021-09-01141097710.3390/ph14100977Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic SubstratesT. Brian Cavitt0Niyati Pathak1Department of Chemistry and Biochemistry, Lipscomb University, One University Park Drive, Nashville, TN 37204, USADepartment of Chemistry and Biochemistry, Lipscomb University, One University Park Drive, Nashville, TN 37204, USASuperhydrophilic and superhydrophobic substrates are widely known to inhibit the attachment of a variety of motile and/or nonmotile bacteria. However, the thermodynamics of attachment are complex. Surface energy measurements alone do not address the complexities of colloidal (i.e., bacterial) dispersions but do affirm that polar (acid-base) interactions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula>) are often more significant than nonpolar (Lifshitz-van der Waals) interactions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>L</mi><mi>W</mi></mrow></msup></mrow></semantics></math></inline-formula>). Classical DLVO theory alone also fails to address all colloidal interactions present in bacterial dispersions such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula> and Born repulsion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>B</mi><mi>o</mi><mi>r</mi><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>) yet accounts for the significant electrostatic double layer repulsion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>E</mi><mi>L</mi></mrow></msup></mrow></semantics></math></inline-formula>). We purpose to model both motile (e.g., <i>P. aeruginosa</i> and <i>E. coli</i>) and nonmotile (e.g., <i>S. aureus</i> and <i>S. epidermidis</i>) bacterial attachment to both superhydrophilic and superhydrophobic substrates via surface energies and extended DLVO theory corrected for bacterial geometries. We used extended DLVO theory and surface energy analyses to characterize the following Gibbs interaction energies for the bacteria with superhydrophobic and superhydrophilic substrates: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>L</mi><mi>W</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>A</mi><mi>B</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>E</mi><mi>L</mi></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>B</mi><mi>o</mi><mi>r</mi><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>. The combination of the aforementioned interactions yields the total Gibbs interaction energy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><msup><mi>G</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow></msup></mrow></semantics></math></inline-formula>) of each bacterium with each substrate. Analysis of the interaction energies with respect to the distance of approach yielded an equilibrium distance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula>) that seems to be independent of both bacterial species and substrate. Utilizing both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula> and Gibbs interaction energies, substrates could be designed to inhibit bacterial attachment.https://www.mdpi.com/1424-8247/14/10/977bacterial-substrate interactionGibbs interaction energysurface energyextended DLVO theorysuperhydrophobicsuperhydrophilic
spellingShingle T. Brian Cavitt
Niyati Pathak
Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates
Pharmaceuticals
bacterial-substrate interaction
Gibbs interaction energy
surface energy
extended DLVO theory
superhydrophobic
superhydrophilic
title Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates
title_full Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates
title_fullStr Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates
title_full_unstemmed Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates
title_short Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates
title_sort modeling bacterial attachment mechanisms on superhydrophobic and superhydrophilic substrates
topic bacterial-substrate interaction
Gibbs interaction energy
surface energy
extended DLVO theory
superhydrophobic
superhydrophilic
url https://www.mdpi.com/1424-8247/14/10/977
work_keys_str_mv AT tbriancavitt modelingbacterialattachmentmechanismsonsuperhydrophobicandsuperhydrophilicsubstrates
AT niyatipathak modelingbacterialattachmentmechanismsonsuperhydrophobicandsuperhydrophilicsubstrates