When the dynamical writing of coupled memories with reinforcement learning meets physical bounds

Manipulating binary digits of information (bits) is a prerequisite for reliable memory utilization. The authors present a dynamical framework in which a reinforcement learning agent harnesses the physics of simple multi-bit mechanical models to restore their memory, suggesting new optimal system des...

Full description

Bibliographic Details
Main Authors: Théo Jules, Laura Michel, Adèle Douin, Frédéric Lechenault
Format: Article
Language:English
Published: Nature Portfolio 2023-02-01
Series:Communications Physics
Online Access:https://doi.org/10.1038/s42005-023-01142-y
_version_ 1811171735030988800
author Théo Jules
Laura Michel
Adèle Douin
Frédéric Lechenault
author_facet Théo Jules
Laura Michel
Adèle Douin
Frédéric Lechenault
author_sort Théo Jules
collection DOAJ
description Manipulating binary digits of information (bits) is a prerequisite for reliable memory utilization. The authors present a dynamical framework in which a reinforcement learning agent harnesses the physics of simple multi-bit mechanical models to restore their memory, suggesting new optimal system designs.
first_indexed 2024-04-10T17:18:58Z
format Article
id doaj.art-fdfd4e5eadb949498017a14a864d308c
institution Directory Open Access Journal
issn 2399-3650
language English
last_indexed 2024-04-10T17:18:58Z
publishDate 2023-02-01
publisher Nature Portfolio
record_format Article
series Communications Physics
spelling doaj.art-fdfd4e5eadb949498017a14a864d308c2023-02-05T12:15:04ZengNature PortfolioCommunications Physics2399-36502023-02-01611810.1038/s42005-023-01142-yWhen the dynamical writing of coupled memories with reinforcement learning meets physical boundsThéo Jules0Laura Michel1Adèle Douin2Frédéric Lechenault3Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv UniversityLaboratoire de Physique de l’École Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne University, Université Paris DiderotLaboratoire de Physique de l’École Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne University, Université Paris DiderotLaboratoire de Physique de l’École Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne University, Université Paris DiderotManipulating binary digits of information (bits) is a prerequisite for reliable memory utilization. The authors present a dynamical framework in which a reinforcement learning agent harnesses the physics of simple multi-bit mechanical models to restore their memory, suggesting new optimal system designs.https://doi.org/10.1038/s42005-023-01142-y
spellingShingle Théo Jules
Laura Michel
Adèle Douin
Frédéric Lechenault
When the dynamical writing of coupled memories with reinforcement learning meets physical bounds
Communications Physics
title When the dynamical writing of coupled memories with reinforcement learning meets physical bounds
title_full When the dynamical writing of coupled memories with reinforcement learning meets physical bounds
title_fullStr When the dynamical writing of coupled memories with reinforcement learning meets physical bounds
title_full_unstemmed When the dynamical writing of coupled memories with reinforcement learning meets physical bounds
title_short When the dynamical writing of coupled memories with reinforcement learning meets physical bounds
title_sort when the dynamical writing of coupled memories with reinforcement learning meets physical bounds
url https://doi.org/10.1038/s42005-023-01142-y
work_keys_str_mv AT theojules whenthedynamicalwritingofcoupledmemorieswithreinforcementlearningmeetsphysicalbounds
AT lauramichel whenthedynamicalwritingofcoupledmemorieswithreinforcementlearningmeetsphysicalbounds
AT adeledouin whenthedynamicalwritingofcoupledmemorieswithreinforcementlearningmeetsphysicalbounds
AT fredericlechenault whenthedynamicalwritingofcoupledmemorieswithreinforcementlearningmeetsphysicalbounds