Investigation on the Influence of Active Underpinning Process on Bridge Substructures during Shield Tunnelling: Numerical Simulation and Field Monitoring

The pile foundation cutting and underpinning process during shield tunnelling significantly impacts the stability of bridge substructures. In this paper, the shield tunnel area from Hongguzhong Avenue Station to Yangming Park Station of Nanchang Metro Line 2 was taken as the research subject, which...

Full description

Bibliographic Details
Main Authors: Fengqu Zheng, Yalong Jiang, Ning Wang, Daxin Geng, Changjie Xu
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/13/1/241
Description
Summary:The pile foundation cutting and underpinning process during shield tunnelling significantly impacts the stability of bridge substructures. In this paper, the shield tunnel area from Hongguzhong Avenue Station to Yangming Park Station of Nanchang Metro Line 2 was taken as the research subject, which crosses the pile foundation underpinning project of the south approach section of Bayi Bridge. Through numerical simulation and on-site monitoring analysis, the influence of the active underpinning process of shield tunnelling pile foundation on the deformation of bridge substructure was studied. First, through analyzing on-site conditions and comparing technical solutions, an active gantry bridge pile foundation underpinning technology was proposed, and the specific construction steps were determined. On this basis, for the C15 pile foundation with the most complex working conditions, ABAQUS software was applied to simulate the jack-up, unloading and pile-cutting process during the pile foundation underpinning construction, and the displacement development of the bridge pier, underpinning beam and new pile during the whole construction process were analyzed. Finally, through on-site monitoring data analysis, the technology’s feasibility and safety were further verified. At the same time, according to the analysis of the monitoring results of the bridge piers, underpinning beams and new piles, the results from the finite element software were nearly the same as the trend shown by the monitoring results, and the displacement of the main structures of the lower part of the bridge was small and within the control range. The above research work verified the applicability of the active gantry type bridge pile foundation underpinning technology in the pile foundation underpinning condition of the single-column single-pile bridge in the narrow space curved bridge section, and is worthy of further promotion and application.
ISSN:2075-5309