Orthogonal Vector Computations

Quantum computation is the suitable orthogonal encoding of possibly holistic functional properties into state vectors, followed by a projective measurement.

Bibliographic Details
Main Author: Karl Svozil
Format: Article
Language:English
Published: MDPI AG 2016-04-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/18/5/156
_version_ 1811304269748371456
author Karl Svozil
author_facet Karl Svozil
author_sort Karl Svozil
collection DOAJ
description Quantum computation is the suitable orthogonal encoding of possibly holistic functional properties into state vectors, followed by a projective measurement.
first_indexed 2024-04-13T08:03:06Z
format Article
id doaj.art-fe1abd50f41d4831b3ac53914b2122f8
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-13T08:03:06Z
publishDate 2016-04-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-fe1abd50f41d4831b3ac53914b2122f82022-12-22T02:55:14ZengMDPI AGEntropy1099-43002016-04-0118515610.3390/e18050156e18050156Orthogonal Vector ComputationsKarl Svozil0Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/136, Vienna 1040, AustriaQuantum computation is the suitable orthogonal encoding of possibly holistic functional properties into state vectors, followed by a projective measurement.http://www.mdpi.com/1099-4300/18/5/156quantum theoryprobability theoryquantum logicquantum algorithmsparity
spellingShingle Karl Svozil
Orthogonal Vector Computations
Entropy
quantum theory
probability theory
quantum logic
quantum algorithms
parity
title Orthogonal Vector Computations
title_full Orthogonal Vector Computations
title_fullStr Orthogonal Vector Computations
title_full_unstemmed Orthogonal Vector Computations
title_short Orthogonal Vector Computations
title_sort orthogonal vector computations
topic quantum theory
probability theory
quantum logic
quantum algorithms
parity
url http://www.mdpi.com/1099-4300/18/5/156
work_keys_str_mv AT karlsvozil orthogonalvectorcomputations