Pulmonary exposure to carbonaceous nanomaterials and sperm quality

Abstract Background Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung...

Full description

Bibliographic Details
Main Authors: Astrid Skovmand, Anna Jacobsen Lauvås, Preben Christensen, Ulla Vogel, Karin Sørig Hougaard, Sandra Goericke-Pesch
Format: Article
Language:English
Published: BMC 2018-01-01
Series:Particle and Fibre Toxicology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12989-018-0242-8
_version_ 1819289664061702144
author Astrid Skovmand
Anna Jacobsen Lauvås
Preben Christensen
Ulla Vogel
Karin Sørig Hougaard
Sandra Goericke-Pesch
author_facet Astrid Skovmand
Anna Jacobsen Lauvås
Preben Christensen
Ulla Vogel
Karin Sørig Hougaard
Sandra Goericke-Pesch
author_sort Astrid Skovmand
collection DOAJ
description Abstract Background Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Methods Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Results Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels were found. Conclusion Despite the sustained pulmonary inflammatory response, an eight week exposure to graphene oxide, Flammruss 101, Printex 90 and the diesel particle SRM1650b in the present study did not appear to affect semen parameters, daily sperm production or testosterone concentration in male NMRI mice.
first_indexed 2024-12-24T03:10:26Z
format Article
id doaj.art-fe1c3de098a4457e88b508d651e36f57
institution Directory Open Access Journal
issn 1743-8977
language English
last_indexed 2024-12-24T03:10:26Z
publishDate 2018-01-01
publisher BMC
record_format Article
series Particle and Fibre Toxicology
spelling doaj.art-fe1c3de098a4457e88b508d651e36f572022-12-21T17:17:51ZengBMCParticle and Fibre Toxicology1743-89772018-01-0115111210.1186/s12989-018-0242-8Pulmonary exposure to carbonaceous nanomaterials and sperm qualityAstrid Skovmand0Anna Jacobsen Lauvås1Preben ChristensenUlla Vogel2Karin Sørig Hougaard3Sandra Goericke-Pesch4The National Research Center for the Working EnvironmentSection for Veterinary Reproduction and Obstetrics, Department of Veterinary Clinical Sciences, University of CopenhagenThe National Research Center for the Working EnvironmentThe National Research Center for the Working EnvironmentSection for Veterinary Reproduction and Obstetrics, Department of Veterinary Clinical Sciences, University of CopenhagenAbstract Background Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Methods Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Results Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels were found. Conclusion Despite the sustained pulmonary inflammatory response, an eight week exposure to graphene oxide, Flammruss 101, Printex 90 and the diesel particle SRM1650b in the present study did not appear to affect semen parameters, daily sperm production or testosterone concentration in male NMRI mice.http://link.springer.com/article/10.1186/s12989-018-0242-8NanomaterialsParticlesToxicitySemen parametersPulmonary exposureComputer-assisted sperm analysis
spellingShingle Astrid Skovmand
Anna Jacobsen Lauvås
Preben Christensen
Ulla Vogel
Karin Sørig Hougaard
Sandra Goericke-Pesch
Pulmonary exposure to carbonaceous nanomaterials and sperm quality
Particle and Fibre Toxicology
Nanomaterials
Particles
Toxicity
Semen parameters
Pulmonary exposure
Computer-assisted sperm analysis
title Pulmonary exposure to carbonaceous nanomaterials and sperm quality
title_full Pulmonary exposure to carbonaceous nanomaterials and sperm quality
title_fullStr Pulmonary exposure to carbonaceous nanomaterials and sperm quality
title_full_unstemmed Pulmonary exposure to carbonaceous nanomaterials and sperm quality
title_short Pulmonary exposure to carbonaceous nanomaterials and sperm quality
title_sort pulmonary exposure to carbonaceous nanomaterials and sperm quality
topic Nanomaterials
Particles
Toxicity
Semen parameters
Pulmonary exposure
Computer-assisted sperm analysis
url http://link.springer.com/article/10.1186/s12989-018-0242-8
work_keys_str_mv AT astridskovmand pulmonaryexposuretocarbonaceousnanomaterialsandspermquality
AT annajacobsenlauvas pulmonaryexposuretocarbonaceousnanomaterialsandspermquality
AT prebenchristensen pulmonaryexposuretocarbonaceousnanomaterialsandspermquality
AT ullavogel pulmonaryexposuretocarbonaceousnanomaterialsandspermquality
AT karinsørighougaard pulmonaryexposuretocarbonaceousnanomaterialsandspermquality
AT sandragoerickepesch pulmonaryexposuretocarbonaceousnanomaterialsandspermquality