Effect of woven geotextile reinforcement on mechanical behavior of calcareous sands

The mechanical properties of calcareous sands are critical as potentially important material sources for marine geotechnical constructions. Brittleness and large deformations created in calcareous sands can affect the stability of marine structures and geosynthetic reinforcement is a promising new a...

Full description

Bibliographic Details
Main Authors: Nima Hakimelahi, Meysam Bayat, Rassoul Ajalloeian, Bahram Nadi
Format: Article
Language:English
Published: Elsevier 2023-07-01
Series:Case Studies in Construction Materials
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214509523001936
Description
Summary:The mechanical properties of calcareous sands are critical as potentially important material sources for marine geotechnical constructions. Brittleness and large deformations created in calcareous sands can affect the stability of marine structures and geosynthetic reinforcement is a promising new approach. In this study, a series of consolidated-drained (CD) tests were conducted to evaluate the mechanical properties and deformation of woven geotextile-reinforced calcareous sand. For this purpose, the effect of geotextile layers, relative density, type of woven geotextile, and confining pressure were investigated. The results show that the strength of the reinforced specimens increases markedly compared to the unreinforced calcareous sand and the deviatoric stress-strain curves change from slight softening to hardening and dilatancy. Also, by increasing the number of woven geotextile layers and applying a confining pressure, the shear deformation shifts toward strain-hardening behavior. Overall, woven geotextiles significantly improve the apparent cohesion strength of calcareous sand soil. The woven geotextile, relative density, and confining pressure all contribute to volumetric changes and dilatancy of reinforced specimens, but particle breakage is more affected by confining pressure.
ISSN:2214-5095