Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles
<p>Wildfires have increased in frequency and intensity in the western United States (US) over the past decades, with negative consequences for air quality. Wildfires emit large quantities of particles and gases that serve as air pollutants and their precursors, and can lead to severe air quali...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-04-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/15/2591/2022/amt-15-2591-2022.pdf |
_version_ | 1811302891047092224 |
---|---|
author | C. Stamatis K. C. Barsanti |
author_facet | C. Stamatis K. C. Barsanti |
author_sort | C. Stamatis |
collection | DOAJ |
description | <p>Wildfires have increased in frequency and intensity in the western United States (US) over the past decades, with negative consequences for air quality. Wildfires emit large quantities of particles and gases that serve as air pollutants and their precursors, and can lead to severe air quality conditions over large spatial and long temporal scales. Therefore, characterization of the chemical constituents in smoke as a function of combustion conditions, fuel type and fuel component is an important step towards improving the prediction of air quality effects from fires and evaluating mitigation strategies. Building on the comprehensive characterization of gaseous non-methane organic compounds (NMOCs) identified in laboratory and field studies, a supervised pattern recognition algorithm was developed that successfully identified unique chemical speciation profiles among similar fuel types common in western coniferous forests. The algorithm was developed using laboratory data from single fuel species and tested on simplified synthetic fuel mixtures. The fuel types in the synthetic mixtures were differentiated, but as the relative mixing proportions became more similar, the differentiation became poorer. Using the results from the pattern recognition algorithm, a classification model based on linear discriminant analysis was trained to differentiate smoke samples based on the contribution(s) of dominant fuel type(s). The classification model was applied to field data and, despite the complexity of the contributing fuels and the presence of fuels “unknown” to the classifier, the dominant sources/fuel types were identified. The pattern recognition and classification algorithms are a promising approach for identifying the types of fuels contributing to smoke samples and facilitating the selection of appropriate chemical speciation profiles for predictive air quality modeling using a highly reduced suite of measured NMOCs. The utility and performance of the pattern recognition and classification algorithms can be improved by expanding the training and test sets to include data from a broader range of single and mixed fuel types.</p> |
first_indexed | 2024-04-13T07:37:32Z |
format | Article |
id | doaj.art-fe29adee32fb4557baad16020637a22d |
institution | Directory Open Access Journal |
issn | 1867-1381 1867-8548 |
language | English |
last_indexed | 2024-04-13T07:37:32Z |
publishDate | 2022-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj.art-fe29adee32fb4557baad16020637a22d2022-12-22T02:56:05ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482022-04-01152591260610.5194/amt-15-2591-2022Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profilesC. StamatisK. C. Barsanti<p>Wildfires have increased in frequency and intensity in the western United States (US) over the past decades, with negative consequences for air quality. Wildfires emit large quantities of particles and gases that serve as air pollutants and their precursors, and can lead to severe air quality conditions over large spatial and long temporal scales. Therefore, characterization of the chemical constituents in smoke as a function of combustion conditions, fuel type and fuel component is an important step towards improving the prediction of air quality effects from fires and evaluating mitigation strategies. Building on the comprehensive characterization of gaseous non-methane organic compounds (NMOCs) identified in laboratory and field studies, a supervised pattern recognition algorithm was developed that successfully identified unique chemical speciation profiles among similar fuel types common in western coniferous forests. The algorithm was developed using laboratory data from single fuel species and tested on simplified synthetic fuel mixtures. The fuel types in the synthetic mixtures were differentiated, but as the relative mixing proportions became more similar, the differentiation became poorer. Using the results from the pattern recognition algorithm, a classification model based on linear discriminant analysis was trained to differentiate smoke samples based on the contribution(s) of dominant fuel type(s). The classification model was applied to field data and, despite the complexity of the contributing fuels and the presence of fuels “unknown” to the classifier, the dominant sources/fuel types were identified. The pattern recognition and classification algorithms are a promising approach for identifying the types of fuels contributing to smoke samples and facilitating the selection of appropriate chemical speciation profiles for predictive air quality modeling using a highly reduced suite of measured NMOCs. The utility and performance of the pattern recognition and classification algorithms can be improved by expanding the training and test sets to include data from a broader range of single and mixed fuel types.</p>https://amt.copernicus.org/articles/15/2591/2022/amt-15-2591-2022.pdf |
spellingShingle | C. Stamatis K. C. Barsanti Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles Atmospheric Measurement Techniques |
title | Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles |
title_full | Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles |
title_fullStr | Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles |
title_full_unstemmed | Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles |
title_short | Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles |
title_sort | development and application of a supervised pattern recognition algorithm for identification of fuel specific emissions profiles |
url | https://amt.copernicus.org/articles/15/2591/2022/amt-15-2591-2022.pdf |
work_keys_str_mv | AT cstamatis developmentandapplicationofasupervisedpatternrecognitionalgorithmforidentificationoffuelspecificemissionsprofiles AT kcbarsanti developmentandapplicationofasupervisedpatternrecognitionalgorithmforidentificationoffuelspecificemissionsprofiles |