Quantum random number generation based on a perovskite light emitting diode

Abstract The recent development of perovskite light emitting diodes (PeLEDs) has the potential to revolutionize the fields of optical communication and lighting devices, due to their simplicity of fabrication and outstanding optical properties. Here we demonstrate that PeLEDs can also be used in the...

Full description

Bibliographic Details
Main Authors: Joakim Argillander, Alvaro Alarcón, Chunxiong Bao, Chaoyang Kuang, Gustavo Lima, Feng Gao, Guilherme B. Xavier
Format: Article
Language:English
Published: Nature Portfolio 2023-06-01
Series:Communications Physics
Online Access:https://doi.org/10.1038/s42005-023-01280-3
Description
Summary:Abstract The recent development of perovskite light emitting diodes (PeLEDs) has the potential to revolutionize the fields of optical communication and lighting devices, due to their simplicity of fabrication and outstanding optical properties. Here we demonstrate that PeLEDs can also be used in the field of quantum technologies by implementing a highly-secure quantum random number generator (QRNG). Modern QRNGs that certify their privacy are posed to replace classical random number generators in applications such as encryption and gambling, and therefore need to be cheap, fast and with integration capabilities. Using a compact metal-halide PeLED source, we generate random numbers, which are certified to be secure against an eavesdropper, following the quantum measurement-device-independent scenario. The obtained generation rate of more than 10 Mbit s−1, which is already comparable to commercial devices, shows that PeLEDs can work as high-quality light sources for quantum information tasks, thus opening up future applications in quantum technologies.
ISSN:2399-3650