Ultrawideband Polarization-Independent Nanoarchitectonics: A Perfect Metamaterial Absorber for Visible and Infrared Optical Window Applications

This article presents numerical analysis of an ultrathin concentric hexagonal ring resonator (CHRR) metamaterial absorber (MMA) for ultrawideband visible and infrared optical window applications. The proposed MMA exhibits an absorption of above 90% from 380 to 2500 nm and an average absorbance of 96...

Full description

Bibliographic Details
Main Authors: Mohammad Lutful Hakim, Abu Hanif, Touhidul Alam, Mohammad Tariqul Islam, Haslina Arshad, Mohamed S. Soliman, Saleh Mohammad Albadran, Md. Shabiul Islam
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/16/2849
Description
Summary:This article presents numerical analysis of an ultrathin concentric hexagonal ring resonator (CHRR) metamaterial absorber (MMA) for ultrawideband visible and infrared optical window applications. The proposed MMA exhibits an absorption of above 90% from 380 to 2500 nm and an average absorbance of 96.64% at entire operational bandwidth with a compact unit cell size of 66 × 66 nm<sup>2</sup>. The designed MMA shows maximum absorption of 99% at 618 nm. The absorption bandwidth of the MMA covers the entire visible and infrared optical windows. The nickel material has been used to design the top and bottom layer of MMA, where aluminium nitride (AlN) has been used as the substrate. The designed hexagonal MMA shows polarization-independent properties due to the symmetry of the design and a stable absorption label is also achieved for oblique incident angles up to 70 °C. The absorption property of hexagonal ring resonator MMA has been analyzed by design evaluation, parametric and various material investigations. The metamaterial property, surface current allocation, magnetic field and electric field have also been analyzed to explore the absorption properties. The proposed MMA has promising prospects in numerous applications like infrared detection, solar cells, gas detection sensors, imaging, etc.
ISSN:2079-4991