Nonexistence of global solutions for fractional temporal Schrodinger equations and systems

We, first, consider the nonlinear Schrodinger equation $$ i^\alpha {}_0^C D_t^\alpha u+\Delta u= \lambda |u|^p+\mu a(x)\cdot\nabla |u|^q, \quad t>0,\; x\in \mathbb{R}^N, $$ where 0<\alpha lt;1, $i^\alpha$ is the principal value of $i^\alpha$, ${}_0^C D_t^\alpha $ is the Caputo fractional deriv...

Full description

Bibliographic Details
Main Authors: Ibtehal Azman, Mohamed Jleli, Mokhtar Kirane, Bessem Samet
Format: Article
Language:English
Published: Texas State University 2017-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2017/276/abstr.html
_version_ 1818960484547690496
author Ibtehal Azman
Mohamed Jleli
Mokhtar Kirane
Bessem Samet
author_facet Ibtehal Azman
Mohamed Jleli
Mokhtar Kirane
Bessem Samet
author_sort Ibtehal Azman
collection DOAJ
description We, first, consider the nonlinear Schrodinger equation $$ i^\alpha {}_0^C D_t^\alpha u+\Delta u= \lambda |u|^p+\mu a(x)\cdot\nabla |u|^q, \quad t>0,\; x\in \mathbb{R}^N, $$ where 0<\alpha lt;1, $i^\alpha$ is the principal value of $i^\alpha$, ${}_0^C D_t^\alpha $ is the Caputo fractional derivative of order $\alpha$, $\lambda\in \mathbb{C}\backslash\{0\}$, $\mu\in \mathbb{C}$, $p>q>1$, $u(t,x)$ is a complex-valued function, and $a: \mathbb{R}^N\to \mathbb{R}^N$ is a given vector function. We provide sufficient conditions for the nonexistence of global weak solution under suitable initial data. Next, we extend our study to the system of nonlinear coupled equations $$\displaylines{ i^\alpha {}_0^C D_t^\alpha u+\Delta u = \lambda |v|^p+\mu a(x)\cdot\nabla |v|^q, \quad t>0,\;x\in \mathbb{R}^N,\cr i^\beta {}_0^C D_t^\beta v+\Delta v = \lambda |u|^\kappa+\mu b(x)\cdot\nabla |u|^\sigma, \quad t>0,\; x\in \mathbb{R}^N, }$$ where $0<\beta\leq \alpha<1$, $\lambda\in \mathbb{C}\backslash\{0\}$, $\mu\in \mathbb{C}$, $p>q>1$, $\kappa>\sigma>1$, and $a,b: \mathbb{R}^N\to \mathbb{R}^N$ are two given vector functions. Our approach is based on the test function method.
first_indexed 2024-12-20T11:58:16Z
format Article
id doaj.art-fe482ab971d34c43bff3ac114a0b5a8b
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-20T11:58:16Z
publishDate 2017-11-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-fe482ab971d34c43bff3ac114a0b5a8b2022-12-21T19:41:36ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912017-11-012017276,117Nonexistence of global solutions for fractional temporal Schrodinger equations and systemsIbtehal Azman0Mohamed Jleli1Mokhtar Kirane2Bessem Samet3 King Saud Univ., Riyadh, Saudi Arabia King Saud Univ., Riyadh, Saudi Arabia Univ. de La Rochelle, Rochelle Cedex, France King Saud Univ., Riyadh, Saudi Arabia We, first, consider the nonlinear Schrodinger equation $$ i^\alpha {}_0^C D_t^\alpha u+\Delta u= \lambda |u|^p+\mu a(x)\cdot\nabla |u|^q, \quad t>0,\; x\in \mathbb{R}^N, $$ where 0<\alpha lt;1, $i^\alpha$ is the principal value of $i^\alpha$, ${}_0^C D_t^\alpha $ is the Caputo fractional derivative of order $\alpha$, $\lambda\in \mathbb{C}\backslash\{0\}$, $\mu\in \mathbb{C}$, $p>q>1$, $u(t,x)$ is a complex-valued function, and $a: \mathbb{R}^N\to \mathbb{R}^N$ is a given vector function. We provide sufficient conditions for the nonexistence of global weak solution under suitable initial data. Next, we extend our study to the system of nonlinear coupled equations $$\displaylines{ i^\alpha {}_0^C D_t^\alpha u+\Delta u = \lambda |v|^p+\mu a(x)\cdot\nabla |v|^q, \quad t>0,\;x\in \mathbb{R}^N,\cr i^\beta {}_0^C D_t^\beta v+\Delta v = \lambda |u|^\kappa+\mu b(x)\cdot\nabla |u|^\sigma, \quad t>0,\; x\in \mathbb{R}^N, }$$ where $0<\beta\leq \alpha<1$, $\lambda\in \mathbb{C}\backslash\{0\}$, $\mu\in \mathbb{C}$, $p>q>1$, $\kappa>\sigma>1$, and $a,b: \mathbb{R}^N\to \mathbb{R}^N$ are two given vector functions. Our approach is based on the test function method.http://ejde.math.txstate.edu/Volumes/2017/276/abstr.htmlFractional temporal Schrodinger equationnonexistenceglobal weak solution
spellingShingle Ibtehal Azman
Mohamed Jleli
Mokhtar Kirane
Bessem Samet
Nonexistence of global solutions for fractional temporal Schrodinger equations and systems
Electronic Journal of Differential Equations
Fractional temporal Schrodinger equation
nonexistence
global weak solution
title Nonexistence of global solutions for fractional temporal Schrodinger equations and systems
title_full Nonexistence of global solutions for fractional temporal Schrodinger equations and systems
title_fullStr Nonexistence of global solutions for fractional temporal Schrodinger equations and systems
title_full_unstemmed Nonexistence of global solutions for fractional temporal Schrodinger equations and systems
title_short Nonexistence of global solutions for fractional temporal Schrodinger equations and systems
title_sort nonexistence of global solutions for fractional temporal schrodinger equations and systems
topic Fractional temporal Schrodinger equation
nonexistence
global weak solution
url http://ejde.math.txstate.edu/Volumes/2017/276/abstr.html
work_keys_str_mv AT ibtehalazman nonexistenceofglobalsolutionsforfractionaltemporalschrodingerequationsandsystems
AT mohamedjleli nonexistenceofglobalsolutionsforfractionaltemporalschrodingerequationsandsystems
AT mokhtarkirane nonexistenceofglobalsolutionsforfractionaltemporalschrodingerequationsandsystems
AT bessemsamet nonexistenceofglobalsolutionsforfractionaltemporalschrodingerequationsandsystems