Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP

We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (...

Full description

Bibliographic Details
Main Authors: E. Proestakis, V. Amiridis, E. Marinou, A. K. Georgoulias, S. Solomos, S. Kazadzis, J. Chimot, H. Che, G. Alexandri, I. Binietoglou, V. Daskalopoulou, K. A. Kourtidis, G. de Leeuw, R. J. van der A
Format: Article
Language:English
Published: Copernicus Publications 2018-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/1337/2018/acp-18-1337-2018.pdf
_version_ 1819071382061842432
author E. Proestakis
E. Proestakis
V. Amiridis
E. Marinou
A. K. Georgoulias
A. K. Georgoulias
S. Solomos
S. Kazadzis
S. Kazadzis
J. Chimot
H. Che
H. Che
G. Alexandri
I. Binietoglou
V. Daskalopoulou
V. Daskalopoulou
K. A. Kourtidis
G. de Leeuw
G. de Leeuw
R. J. van der A
author_facet E. Proestakis
E. Proestakis
V. Amiridis
E. Marinou
A. K. Georgoulias
A. K. Georgoulias
S. Solomos
S. Kazadzis
S. Kazadzis
J. Chimot
H. Che
H. Che
G. Alexandri
I. Binietoglou
V. Daskalopoulou
V. Daskalopoulou
K. A. Kourtidis
G. de Leeuw
G. de Leeuw
R. J. van der A
author_sort E. Proestakis
collection DOAJ
description We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.
first_indexed 2024-12-21T17:20:56Z
format Article
id doaj.art-fe6107a819834f4c991c2d17a82fddd9
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-21T17:20:56Z
publishDate 2018-02-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-fe6107a819834f4c991c2d17a82fddd92022-12-21T18:56:10ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-02-01181337136210.5194/acp-18-1337-2018Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOPE. Proestakis0E. Proestakis1V. Amiridis2E. Marinou3A. K. Georgoulias4A. K. Georgoulias5S. Solomos6S. Kazadzis7S. Kazadzis8J. Chimot9H. Che10H. Che11G. Alexandri12I. Binietoglou13V. Daskalopoulou14V. Daskalopoulou15K. A. Kourtidis16G. de Leeuw17G. de Leeuw18R. J. van der A19IAASARS, National Observatory of Athens, Athens, 15236, GreeceLaboratory of Atmospheric Physics, Department of Physics, University of Patras, Patras, 26500, GreeceIAASARS, National Observatory of Athens, Athens, 15236, GreeceIAASARS, National Observatory of Athens, Athens, 15236, GreeceLaboratory of Atmospheric Pollution and Pollution Control Engineering of Atmospheric Pollutants, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, GreeceEnergy, Environment and Water Research Center, Cyprus Institute, Nicosia, CyprusIAASARS, National Observatory of Athens, Athens, 15236, GreeceInstitute of Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, 15236 Penteli, Athens, GreecePhysikalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC) Dorfstrasse 33, 7260 Davos Dorf, SwitzerlandDepartment of Geoscience and Remote Sensing (GRS), Civil Engineering and Geosciences, TU Delft, Delft, the NetherlandsKey Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, ChinaJiangsu Collaborative Innovation Center of Climate Change, Nanjing, 210093, ChinaLaboratory of Atmospheric Pollution and Pollution Control Engineering of Atmospheric Pollutants, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, GreeceNational Institute of R&D for Optoelectronics, Magurele, RomaniaIAASARS, National Observatory of Athens, Athens, 15236, GreeceDepartment of Physics, University of Crete, Heraklion, GreeceLaboratory of Atmospheric Pollution and Pollution Control Engineering of Atmospheric Pollutants, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, GreeceFinnish Meteorological Institute (FMI), Helsinki, FinlandDepartment of Physics, University of Helsinki, Helsinki, FinlandRoyal Netherlands Meteorological Institute, De Bilt, NetherlandsWe present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.https://www.atmos-chem-phys.net/18/1337/2018/acp-18-1337-2018.pdf
spellingShingle E. Proestakis
E. Proestakis
V. Amiridis
E. Marinou
A. K. Georgoulias
A. K. Georgoulias
S. Solomos
S. Kazadzis
S. Kazadzis
J. Chimot
H. Che
H. Che
G. Alexandri
I. Binietoglou
V. Daskalopoulou
V. Daskalopoulou
K. A. Kourtidis
G. de Leeuw
G. de Leeuw
R. J. van der A
Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP
Atmospheric Chemistry and Physics
title Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP
title_full Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP
title_fullStr Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP
title_full_unstemmed Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP
title_short Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP
title_sort nine year spatial and temporal evolution of desert dust aerosols over south and east asia as revealed by caliop
url https://www.atmos-chem-phys.net/18/1337/2018/acp-18-1337-2018.pdf
work_keys_str_mv AT eproestakis nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT eproestakis nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT vamiridis nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT emarinou nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT akgeorgoulias nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT akgeorgoulias nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT ssolomos nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT skazadzis nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT skazadzis nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT jchimot nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT hche nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT hche nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT galexandri nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT ibinietoglou nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT vdaskalopoulou nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT vdaskalopoulou nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT kakourtidis nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT gdeleeuw nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT gdeleeuw nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop
AT rjvandera nineyearspatialandtemporalevolutionofdesertdustaerosolsoversouthandeastasiaasrevealedbycaliop