Summary: | We introduce tree-width for first order formulae \phi, fotw(\phi). We show
that computing fotw is fixed-parameter tractable with parameter fotw. Moreover,
we show that on classes of formulae of bounded fotw, model checking is fixed
parameter tractable, with parameter the length of the formula. This is done by
translating a formula \phi\ with fotw(\phi)<k into a formula of the k-variable
fragment L^k of first order logic. For fixed k, the question whether a given
first order formula is equivalent to an L^k formula is undecidable. In
contrast, the classes of first order formulae with bounded fotw are fragments
of first order logic for which the equivalence is decidable.
Our notion of tree-width generalises tree-width of conjunctive queries to
arbitrary formulae of first order logic by taking into account the quantifier
interaction in a formula. Moreover, it is more powerful than the notion of
elimination-width of quantified constraint formulae, defined by Chen and Dalmau
(CSL 2005): for quantified constraint formulae, both bounded elimination-width
and bounded fotw allow for model checking in polynomial time. We prove that
fotw of a quantified constraint formula \phi\ is bounded by the
elimination-width of \phi, and we exhibit a class of quantified constraint
formulae with bounded fotw, that has unbounded elimination-width. A similar
comparison holds for strict tree-width of non-recursive stratified datalog as
defined by Flum, Frick, and Grohe (JACM 49, 2002).
Finally, we show that fotw has a characterization in terms of a cops and
robbers game without monotonicity cost.
|