TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i>

New antifungals with unique modes of action are urgently needed to treat the increasing global burden of invasive fungal infections. The fungal inositol polyphosphate kinase (IPK) pathway, comprised of IPKs that convert IP<sub>3</sub> to IP<sub>8</sub>, provides a promising n...

Full description

Bibliographic Details
Main Authors: Desmarini Desmarini, Daniel Truong, Lorna Wilkinson-White, Chandrika Desphande, Mario Torrado, Joel P. Mackay, Jacqueline M. Matthews, Tania C. Sorrell, Sophie Lev, Philip E. Thompson, Julianne Teresa Djordjevic
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/12/10/1526
_version_ 1797474894849507328
author Desmarini Desmarini
Daniel Truong
Lorna Wilkinson-White
Chandrika Desphande
Mario Torrado
Joel P. Mackay
Jacqueline M. Matthews
Tania C. Sorrell
Sophie Lev
Philip E. Thompson
Julianne Teresa Djordjevic
author_facet Desmarini Desmarini
Daniel Truong
Lorna Wilkinson-White
Chandrika Desphande
Mario Torrado
Joel P. Mackay
Jacqueline M. Matthews
Tania C. Sorrell
Sophie Lev
Philip E. Thompson
Julianne Teresa Djordjevic
author_sort Desmarini Desmarini
collection DOAJ
description New antifungals with unique modes of action are urgently needed to treat the increasing global burden of invasive fungal infections. The fungal inositol polyphosphate kinase (IPK) pathway, comprised of IPKs that convert IP<sub>3</sub> to IP<sub>8</sub>, provides a promising new target due to its impact on multiple, critical cellular functions and, unlike in mammalian cells, its lack of redundancy. Nearly all IPKs in the fungal pathway are essential for virulence, with IP<sub>3-4</sub> kinase (IP<sub>3-4</sub>K) the most critical. The dibenzylaminopurine compound, <i>N</i>2-(<i>m</i>-trifluorobenzylamino)-<i>N</i>6-(<i>p</i>-nitrobenzylamino)purine (TNP), is a commercially available inhibitor of mammalian IPKs. The ability of TNP to be adapted as an inhibitor of fungal IP<sub>3-4</sub>K has not been investigated. We purified IP<sub>3-4</sub>K from the human pathogens, <i>Cryptococcus neoformans</i> and <i>Candida albicans</i>, and optimised enzyme and surface plasmon resonance (SPR) assays to determine the half inhibitory concentration (IC<sub>50</sub>) and binding affinity (K<sub>D</sub>), respectively, of TNP and 38 analogues. A novel chemical route was developed to efficiently prepare TNP analogues. TNP and its analogues demonstrated inhibition of recombinant IP<sub>3-4</sub>K from <i>C. neoformans</i> (<i>Cn</i>Arg1) at low µM IC<sub>50</sub>s, but not IP<sub>3-4</sub>K from <i>C. albicans</i> (<i>Ca</i>Ipk2) and many analogues exhibited selectivity for <i>Cn</i>Arg1 over the human equivalent, <i>Hs</i>IPMK. Our results provide a foundation for improving potency and selectivity of the TNP series for fungal IP<sub>3-4</sub>K.
first_indexed 2024-03-09T20:36:31Z
format Article
id doaj.art-fe7ab847de6948a7add6e26a15a3fb16
institution Directory Open Access Journal
issn 2218-273X
language English
last_indexed 2024-03-09T20:36:31Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Biomolecules
spelling doaj.art-fe7ab847de6948a7add6e26a15a3fb162023-11-23T23:10:04ZengMDPI AGBiomolecules2218-273X2022-10-011210152610.3390/biom12101526TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i>Desmarini Desmarini0Daniel Truong1Lorna Wilkinson-White2Chandrika Desphande3Mario Torrado4Joel P. Mackay5Jacqueline M. Matthews6Tania C. Sorrell7Sophie Lev8Philip E. Thompson9Julianne Teresa Djordjevic10Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, AustraliaMedicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, AustraliaSydney Analytical, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, AustraliaSydney Analytical, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, AustraliaSydney Analytical, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, AustraliaSchool of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, AustraliaSchool of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, AustraliaSydney Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, AustraliaCentre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, AustraliaMedicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, AustraliaCentre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, AustraliaNew antifungals with unique modes of action are urgently needed to treat the increasing global burden of invasive fungal infections. The fungal inositol polyphosphate kinase (IPK) pathway, comprised of IPKs that convert IP<sub>3</sub> to IP<sub>8</sub>, provides a promising new target due to its impact on multiple, critical cellular functions and, unlike in mammalian cells, its lack of redundancy. Nearly all IPKs in the fungal pathway are essential for virulence, with IP<sub>3-4</sub> kinase (IP<sub>3-4</sub>K) the most critical. The dibenzylaminopurine compound, <i>N</i>2-(<i>m</i>-trifluorobenzylamino)-<i>N</i>6-(<i>p</i>-nitrobenzylamino)purine (TNP), is a commercially available inhibitor of mammalian IPKs. The ability of TNP to be adapted as an inhibitor of fungal IP<sub>3-4</sub>K has not been investigated. We purified IP<sub>3-4</sub>K from the human pathogens, <i>Cryptococcus neoformans</i> and <i>Candida albicans</i>, and optimised enzyme and surface plasmon resonance (SPR) assays to determine the half inhibitory concentration (IC<sub>50</sub>) and binding affinity (K<sub>D</sub>), respectively, of TNP and 38 analogues. A novel chemical route was developed to efficiently prepare TNP analogues. TNP and its analogues demonstrated inhibition of recombinant IP<sub>3-4</sub>K from <i>C. neoformans</i> (<i>Cn</i>Arg1) at low µM IC<sub>50</sub>s, but not IP<sub>3-4</sub>K from <i>C. albicans</i> (<i>Ca</i>Ipk2) and many analogues exhibited selectivity for <i>Cn</i>Arg1 over the human equivalent, <i>Hs</i>IPMK. Our results provide a foundation for improving potency and selectivity of the TNP series for fungal IP<sub>3-4</sub>K.https://www.mdpi.com/2218-273X/12/10/1526inositol polyphosphate kinaseIP<sub>3-4</sub>KTNPdibenzylaminopurinefungal pathogensantifungal drug discovery
spellingShingle Desmarini Desmarini
Daniel Truong
Lorna Wilkinson-White
Chandrika Desphande
Mario Torrado
Joel P. Mackay
Jacqueline M. Matthews
Tania C. Sorrell
Sophie Lev
Philip E. Thompson
Julianne Teresa Djordjevic
TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i>
Biomolecules
inositol polyphosphate kinase
IP<sub>3-4</sub>K
TNP
dibenzylaminopurine
fungal pathogens
antifungal drug discovery
title TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i>
title_full TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i>
title_fullStr TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i>
title_full_unstemmed TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i>
title_short TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i>
title_sort tnp analogues inhibit the virulence promoting ip sub 3 4 sub kinase arg1 in the fungal pathogen i cryptococcus neoformans i
topic inositol polyphosphate kinase
IP<sub>3-4</sub>K
TNP
dibenzylaminopurine
fungal pathogens
antifungal drug discovery
url https://www.mdpi.com/2218-273X/12/10/1526
work_keys_str_mv AT desmarinidesmarini tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi
AT danieltruong tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi
AT lornawilkinsonwhite tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi
AT chandrikadesphande tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi
AT mariotorrado tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi
AT joelpmackay tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi
AT jacquelinemmatthews tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi
AT taniacsorrell tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi
AT sophielev tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi
AT philipethompson tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi
AT julianneteresadjordjevic tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi