TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i>
New antifungals with unique modes of action are urgently needed to treat the increasing global burden of invasive fungal infections. The fungal inositol polyphosphate kinase (IPK) pathway, comprised of IPKs that convert IP<sub>3</sub> to IP<sub>8</sub>, provides a promising n...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-10-01
|
Series: | Biomolecules |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-273X/12/10/1526 |
_version_ | 1797474894849507328 |
---|---|
author | Desmarini Desmarini Daniel Truong Lorna Wilkinson-White Chandrika Desphande Mario Torrado Joel P. Mackay Jacqueline M. Matthews Tania C. Sorrell Sophie Lev Philip E. Thompson Julianne Teresa Djordjevic |
author_facet | Desmarini Desmarini Daniel Truong Lorna Wilkinson-White Chandrika Desphande Mario Torrado Joel P. Mackay Jacqueline M. Matthews Tania C. Sorrell Sophie Lev Philip E. Thompson Julianne Teresa Djordjevic |
author_sort | Desmarini Desmarini |
collection | DOAJ |
description | New antifungals with unique modes of action are urgently needed to treat the increasing global burden of invasive fungal infections. The fungal inositol polyphosphate kinase (IPK) pathway, comprised of IPKs that convert IP<sub>3</sub> to IP<sub>8</sub>, provides a promising new target due to its impact on multiple, critical cellular functions and, unlike in mammalian cells, its lack of redundancy. Nearly all IPKs in the fungal pathway are essential for virulence, with IP<sub>3-4</sub> kinase (IP<sub>3-4</sub>K) the most critical. The dibenzylaminopurine compound, <i>N</i>2-(<i>m</i>-trifluorobenzylamino)-<i>N</i>6-(<i>p</i>-nitrobenzylamino)purine (TNP), is a commercially available inhibitor of mammalian IPKs. The ability of TNP to be adapted as an inhibitor of fungal IP<sub>3-4</sub>K has not been investigated. We purified IP<sub>3-4</sub>K from the human pathogens, <i>Cryptococcus neoformans</i> and <i>Candida albicans</i>, and optimised enzyme and surface plasmon resonance (SPR) assays to determine the half inhibitory concentration (IC<sub>50</sub>) and binding affinity (K<sub>D</sub>), respectively, of TNP and 38 analogues. A novel chemical route was developed to efficiently prepare TNP analogues. TNP and its analogues demonstrated inhibition of recombinant IP<sub>3-4</sub>K from <i>C. neoformans</i> (<i>Cn</i>Arg1) at low µM IC<sub>50</sub>s, but not IP<sub>3-4</sub>K from <i>C. albicans</i> (<i>Ca</i>Ipk2) and many analogues exhibited selectivity for <i>Cn</i>Arg1 over the human equivalent, <i>Hs</i>IPMK. Our results provide a foundation for improving potency and selectivity of the TNP series for fungal IP<sub>3-4</sub>K. |
first_indexed | 2024-03-09T20:36:31Z |
format | Article |
id | doaj.art-fe7ab847de6948a7add6e26a15a3fb16 |
institution | Directory Open Access Journal |
issn | 2218-273X |
language | English |
last_indexed | 2024-03-09T20:36:31Z |
publishDate | 2022-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Biomolecules |
spelling | doaj.art-fe7ab847de6948a7add6e26a15a3fb162023-11-23T23:10:04ZengMDPI AGBiomolecules2218-273X2022-10-011210152610.3390/biom12101526TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i>Desmarini Desmarini0Daniel Truong1Lorna Wilkinson-White2Chandrika Desphande3Mario Torrado4Joel P. Mackay5Jacqueline M. Matthews6Tania C. Sorrell7Sophie Lev8Philip E. Thompson9Julianne Teresa Djordjevic10Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, AustraliaMedicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, AustraliaSydney Analytical, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, AustraliaSydney Analytical, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, AustraliaSydney Analytical, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, AustraliaSchool of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, AustraliaSchool of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, AustraliaSydney Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, AustraliaCentre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, AustraliaMedicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, AustraliaCentre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, AustraliaNew antifungals with unique modes of action are urgently needed to treat the increasing global burden of invasive fungal infections. The fungal inositol polyphosphate kinase (IPK) pathway, comprised of IPKs that convert IP<sub>3</sub> to IP<sub>8</sub>, provides a promising new target due to its impact on multiple, critical cellular functions and, unlike in mammalian cells, its lack of redundancy. Nearly all IPKs in the fungal pathway are essential for virulence, with IP<sub>3-4</sub> kinase (IP<sub>3-4</sub>K) the most critical. The dibenzylaminopurine compound, <i>N</i>2-(<i>m</i>-trifluorobenzylamino)-<i>N</i>6-(<i>p</i>-nitrobenzylamino)purine (TNP), is a commercially available inhibitor of mammalian IPKs. The ability of TNP to be adapted as an inhibitor of fungal IP<sub>3-4</sub>K has not been investigated. We purified IP<sub>3-4</sub>K from the human pathogens, <i>Cryptococcus neoformans</i> and <i>Candida albicans</i>, and optimised enzyme and surface plasmon resonance (SPR) assays to determine the half inhibitory concentration (IC<sub>50</sub>) and binding affinity (K<sub>D</sub>), respectively, of TNP and 38 analogues. A novel chemical route was developed to efficiently prepare TNP analogues. TNP and its analogues demonstrated inhibition of recombinant IP<sub>3-4</sub>K from <i>C. neoformans</i> (<i>Cn</i>Arg1) at low µM IC<sub>50</sub>s, but not IP<sub>3-4</sub>K from <i>C. albicans</i> (<i>Ca</i>Ipk2) and many analogues exhibited selectivity for <i>Cn</i>Arg1 over the human equivalent, <i>Hs</i>IPMK. Our results provide a foundation for improving potency and selectivity of the TNP series for fungal IP<sub>3-4</sub>K.https://www.mdpi.com/2218-273X/12/10/1526inositol polyphosphate kinaseIP<sub>3-4</sub>KTNPdibenzylaminopurinefungal pathogensantifungal drug discovery |
spellingShingle | Desmarini Desmarini Daniel Truong Lorna Wilkinson-White Chandrika Desphande Mario Torrado Joel P. Mackay Jacqueline M. Matthews Tania C. Sorrell Sophie Lev Philip E. Thompson Julianne Teresa Djordjevic TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i> Biomolecules inositol polyphosphate kinase IP<sub>3-4</sub>K TNP dibenzylaminopurine fungal pathogens antifungal drug discovery |
title | TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i> |
title_full | TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i> |
title_fullStr | TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i> |
title_full_unstemmed | TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i> |
title_short | TNP Analogues Inhibit the Virulence Promoting IP<sub>3-4</sub> Kinase Arg1 in the Fungal Pathogen <i>Cryptococcus neoformans</i> |
title_sort | tnp analogues inhibit the virulence promoting ip sub 3 4 sub kinase arg1 in the fungal pathogen i cryptococcus neoformans i |
topic | inositol polyphosphate kinase IP<sub>3-4</sub>K TNP dibenzylaminopurine fungal pathogens antifungal drug discovery |
url | https://www.mdpi.com/2218-273X/12/10/1526 |
work_keys_str_mv | AT desmarinidesmarini tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi AT danieltruong tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi AT lornawilkinsonwhite tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi AT chandrikadesphande tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi AT mariotorrado tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi AT joelpmackay tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi AT jacquelinemmatthews tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi AT taniacsorrell tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi AT sophielev tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi AT philipethompson tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi AT julianneteresadjordjevic tnpanaloguesinhibitthevirulencepromotingipsub34subkinasearg1inthefungalpathogenicryptococcusneoformansi |