Switching the Post-translational Modification of Translation Elongation Factor EF-P
Tripeptides with two consecutive prolines are the shortest and most frequent sequences causing ribosome stalling. The bacterial translation elongation factor P (EF-P) relieves this arrest, allowing protein biosynthesis to continue. A seven amino acids long loop between beta-strands β3/β4 is crucial...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-05-01
|
Series: | Frontiers in Microbiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fmicb.2019.01148/full |
_version_ | 1818242627881926656 |
---|---|
author | Wolfram Volkwein Ralph Krafczyk Pravin Kumar Ankush Jagtap Marina Parr Marina Parr Elena Mankina Jakub Macošek Jakub Macošek Zhenghuan Guo Maximilian Josef Ludwig Johannes Fürst Maximilian Josef Ludwig Johannes Fürst Miriam Pfab Dmitrij Frishman Dmitrij Frishman Janosch Hennig Kirsten Jung Jürgen Lassak |
author_facet | Wolfram Volkwein Ralph Krafczyk Pravin Kumar Ankush Jagtap Marina Parr Marina Parr Elena Mankina Jakub Macošek Jakub Macošek Zhenghuan Guo Maximilian Josef Ludwig Johannes Fürst Maximilian Josef Ludwig Johannes Fürst Miriam Pfab Dmitrij Frishman Dmitrij Frishman Janosch Hennig Kirsten Jung Jürgen Lassak |
author_sort | Wolfram Volkwein |
collection | DOAJ |
description | Tripeptides with two consecutive prolines are the shortest and most frequent sequences causing ribosome stalling. The bacterial translation elongation factor P (EF-P) relieves this arrest, allowing protein biosynthesis to continue. A seven amino acids long loop between beta-strands β3/β4 is crucial for EF-P function and modified at its tip by lysylation of lysine or rhamnosylation of arginine. Phylogenetic analyses unveiled an invariant proline in the -2 position of the modification site in EF-Ps that utilize lysine modifications such as Escherichia coli. Bacteria with the arginine modification like Pseudomonas putida on the contrary have selected against it. Focusing on the EF-Ps from these two model organisms we demonstrate the importance of the β3/β4 loop composition for functionalization by chemically distinct modifications. Ultimately, we show that only two amino acid changes in E. coli EF-P are needed for switching the modification strategy from lysylation to rhamnosylation. |
first_indexed | 2024-12-12T13:48:15Z |
format | Article |
id | doaj.art-fe7ad7c7b8a647ccb645ebe6c6169dd8 |
institution | Directory Open Access Journal |
issn | 1664-302X |
language | English |
last_indexed | 2024-12-12T13:48:15Z |
publishDate | 2019-05-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Microbiology |
spelling | doaj.art-fe7ad7c7b8a647ccb645ebe6c6169dd82022-12-22T00:22:37ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2019-05-011010.3389/fmicb.2019.01148451298Switching the Post-translational Modification of Translation Elongation Factor EF-PWolfram Volkwein0Ralph Krafczyk1Pravin Kumar Ankush Jagtap2Marina Parr3Marina Parr4Elena Mankina5Jakub Macošek6Jakub Macošek7Zhenghuan Guo8Maximilian Josef Ludwig Johannes Fürst9Maximilian Josef Ludwig Johannes Fürst10Miriam Pfab11Dmitrij Frishman12Dmitrij Frishman13Janosch Hennig14Kirsten Jung15Jürgen Lassak16Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, GermanyDepartment of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, GermanySt. Petersburg State Polytechnic University, Saint Petersburg, RussiaDepartment of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, GermanyStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, GermanyFaculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, GermanyCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyMolecular Enzymology Group, University of Groningen, Groningen, NetherlandsCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyDepartment of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, GermanySt. Petersburg State Polytechnic University, Saint Petersburg, RussiaStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, GermanyCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyTripeptides with two consecutive prolines are the shortest and most frequent sequences causing ribosome stalling. The bacterial translation elongation factor P (EF-P) relieves this arrest, allowing protein biosynthesis to continue. A seven amino acids long loop between beta-strands β3/β4 is crucial for EF-P function and modified at its tip by lysylation of lysine or rhamnosylation of arginine. Phylogenetic analyses unveiled an invariant proline in the -2 position of the modification site in EF-Ps that utilize lysine modifications such as Escherichia coli. Bacteria with the arginine modification like Pseudomonas putida on the contrary have selected against it. Focusing on the EF-Ps from these two model organisms we demonstrate the importance of the β3/β4 loop composition for functionalization by chemically distinct modifications. Ultimately, we show that only two amino acid changes in E. coli EF-P are needed for switching the modification strategy from lysylation to rhamnosylation.https://www.frontiersin.org/article/10.3389/fmicb.2019.01148/fullIF5AEarPEpmAbacterial two-hybridglycosylationTDP-rhamnose |
spellingShingle | Wolfram Volkwein Ralph Krafczyk Pravin Kumar Ankush Jagtap Marina Parr Marina Parr Elena Mankina Jakub Macošek Jakub Macošek Zhenghuan Guo Maximilian Josef Ludwig Johannes Fürst Maximilian Josef Ludwig Johannes Fürst Miriam Pfab Dmitrij Frishman Dmitrij Frishman Janosch Hennig Kirsten Jung Jürgen Lassak Switching the Post-translational Modification of Translation Elongation Factor EF-P Frontiers in Microbiology IF5A EarP EpmA bacterial two-hybrid glycosylation TDP-rhamnose |
title | Switching the Post-translational Modification of Translation Elongation Factor EF-P |
title_full | Switching the Post-translational Modification of Translation Elongation Factor EF-P |
title_fullStr | Switching the Post-translational Modification of Translation Elongation Factor EF-P |
title_full_unstemmed | Switching the Post-translational Modification of Translation Elongation Factor EF-P |
title_short | Switching the Post-translational Modification of Translation Elongation Factor EF-P |
title_sort | switching the post translational modification of translation elongation factor ef p |
topic | IF5A EarP EpmA bacterial two-hybrid glycosylation TDP-rhamnose |
url | https://www.frontiersin.org/article/10.3389/fmicb.2019.01148/full |
work_keys_str_mv | AT wolframvolkwein switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT ralphkrafczyk switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT pravinkumarankushjagtap switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT marinaparr switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT marinaparr switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT elenamankina switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT jakubmacosek switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT jakubmacosek switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT zhenghuanguo switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT maximilianjosefludwigjohannesfurst switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT maximilianjosefludwigjohannesfurst switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT miriampfab switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT dmitrijfrishman switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT dmitrijfrishman switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT janoschhennig switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT kirstenjung switchingtheposttranslationalmodificationoftranslationelongationfactorefp AT jurgenlassak switchingtheposttranslationalmodificationoftranslationelongationfactorefp |