Switching the Post-translational Modification of Translation Elongation Factor EF-P

Tripeptides with two consecutive prolines are the shortest and most frequent sequences causing ribosome stalling. The bacterial translation elongation factor P (EF-P) relieves this arrest, allowing protein biosynthesis to continue. A seven amino acids long loop between beta-strands β3/β4 is crucial...

Full description

Bibliographic Details
Main Authors: Wolfram Volkwein, Ralph Krafczyk, Pravin Kumar Ankush Jagtap, Marina Parr, Elena Mankina, Jakub Macošek, Zhenghuan Guo, Maximilian Josef Ludwig Johannes Fürst, Miriam Pfab, Dmitrij Frishman, Janosch Hennig, Kirsten Jung, Jürgen Lassak
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-05-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fmicb.2019.01148/full
_version_ 1818242627881926656
author Wolfram Volkwein
Ralph Krafczyk
Pravin Kumar Ankush Jagtap
Marina Parr
Marina Parr
Elena Mankina
Jakub Macošek
Jakub Macošek
Zhenghuan Guo
Maximilian Josef Ludwig Johannes Fürst
Maximilian Josef Ludwig Johannes Fürst
Miriam Pfab
Dmitrij Frishman
Dmitrij Frishman
Janosch Hennig
Kirsten Jung
Jürgen Lassak
author_facet Wolfram Volkwein
Ralph Krafczyk
Pravin Kumar Ankush Jagtap
Marina Parr
Marina Parr
Elena Mankina
Jakub Macošek
Jakub Macošek
Zhenghuan Guo
Maximilian Josef Ludwig Johannes Fürst
Maximilian Josef Ludwig Johannes Fürst
Miriam Pfab
Dmitrij Frishman
Dmitrij Frishman
Janosch Hennig
Kirsten Jung
Jürgen Lassak
author_sort Wolfram Volkwein
collection DOAJ
description Tripeptides with two consecutive prolines are the shortest and most frequent sequences causing ribosome stalling. The bacterial translation elongation factor P (EF-P) relieves this arrest, allowing protein biosynthesis to continue. A seven amino acids long loop between beta-strands β3/β4 is crucial for EF-P function and modified at its tip by lysylation of lysine or rhamnosylation of arginine. Phylogenetic analyses unveiled an invariant proline in the -2 position of the modification site in EF-Ps that utilize lysine modifications such as Escherichia coli. Bacteria with the arginine modification like Pseudomonas putida on the contrary have selected against it. Focusing on the EF-Ps from these two model organisms we demonstrate the importance of the β3/β4 loop composition for functionalization by chemically distinct modifications. Ultimately, we show that only two amino acid changes in E. coli EF-P are needed for switching the modification strategy from lysylation to rhamnosylation.
first_indexed 2024-12-12T13:48:15Z
format Article
id doaj.art-fe7ad7c7b8a647ccb645ebe6c6169dd8
institution Directory Open Access Journal
issn 1664-302X
language English
last_indexed 2024-12-12T13:48:15Z
publishDate 2019-05-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Microbiology
spelling doaj.art-fe7ad7c7b8a647ccb645ebe6c6169dd82022-12-22T00:22:37ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2019-05-011010.3389/fmicb.2019.01148451298Switching the Post-translational Modification of Translation Elongation Factor EF-PWolfram Volkwein0Ralph Krafczyk1Pravin Kumar Ankush Jagtap2Marina Parr3Marina Parr4Elena Mankina5Jakub Macošek6Jakub Macošek7Zhenghuan Guo8Maximilian Josef Ludwig Johannes Fürst9Maximilian Josef Ludwig Johannes Fürst10Miriam Pfab11Dmitrij Frishman12Dmitrij Frishman13Janosch Hennig14Kirsten Jung15Jürgen Lassak16Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, GermanyDepartment of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, GermanySt. Petersburg State Polytechnic University, Saint Petersburg, RussiaDepartment of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, GermanyStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, GermanyFaculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, GermanyCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyMolecular Enzymology Group, University of Groningen, Groningen, NetherlandsCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyDepartment of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, GermanySt. Petersburg State Polytechnic University, Saint Petersburg, RussiaStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, GermanyCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyCenter for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, GermanyTripeptides with two consecutive prolines are the shortest and most frequent sequences causing ribosome stalling. The bacterial translation elongation factor P (EF-P) relieves this arrest, allowing protein biosynthesis to continue. A seven amino acids long loop between beta-strands β3/β4 is crucial for EF-P function and modified at its tip by lysylation of lysine or rhamnosylation of arginine. Phylogenetic analyses unveiled an invariant proline in the -2 position of the modification site in EF-Ps that utilize lysine modifications such as Escherichia coli. Bacteria with the arginine modification like Pseudomonas putida on the contrary have selected against it. Focusing on the EF-Ps from these two model organisms we demonstrate the importance of the β3/β4 loop composition for functionalization by chemically distinct modifications. Ultimately, we show that only two amino acid changes in E. coli EF-P are needed for switching the modification strategy from lysylation to rhamnosylation.https://www.frontiersin.org/article/10.3389/fmicb.2019.01148/fullIF5AEarPEpmAbacterial two-hybridglycosylationTDP-rhamnose
spellingShingle Wolfram Volkwein
Ralph Krafczyk
Pravin Kumar Ankush Jagtap
Marina Parr
Marina Parr
Elena Mankina
Jakub Macošek
Jakub Macošek
Zhenghuan Guo
Maximilian Josef Ludwig Johannes Fürst
Maximilian Josef Ludwig Johannes Fürst
Miriam Pfab
Dmitrij Frishman
Dmitrij Frishman
Janosch Hennig
Kirsten Jung
Jürgen Lassak
Switching the Post-translational Modification of Translation Elongation Factor EF-P
Frontiers in Microbiology
IF5A
EarP
EpmA
bacterial two-hybrid
glycosylation
TDP-rhamnose
title Switching the Post-translational Modification of Translation Elongation Factor EF-P
title_full Switching the Post-translational Modification of Translation Elongation Factor EF-P
title_fullStr Switching the Post-translational Modification of Translation Elongation Factor EF-P
title_full_unstemmed Switching the Post-translational Modification of Translation Elongation Factor EF-P
title_short Switching the Post-translational Modification of Translation Elongation Factor EF-P
title_sort switching the post translational modification of translation elongation factor ef p
topic IF5A
EarP
EpmA
bacterial two-hybrid
glycosylation
TDP-rhamnose
url https://www.frontiersin.org/article/10.3389/fmicb.2019.01148/full
work_keys_str_mv AT wolframvolkwein switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT ralphkrafczyk switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT pravinkumarankushjagtap switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT marinaparr switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT marinaparr switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT elenamankina switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT jakubmacosek switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT jakubmacosek switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT zhenghuanguo switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT maximilianjosefludwigjohannesfurst switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT maximilianjosefludwigjohannesfurst switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT miriampfab switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT dmitrijfrishman switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT dmitrijfrishman switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT janoschhennig switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT kirstenjung switchingtheposttranslationalmodificationoftranslationelongationfactorefp
AT jurgenlassak switchingtheposttranslationalmodificationoftranslationelongationfactorefp