Enhancing the efficacy of albendazole for liver cancer treatment using mesoporous silica nanoparticles

The present study aimed to synthesize albendazole (ABZ)-loaded Mobil Composition of Matter No. 41 (MCM-41 NPs) to increase the efficacy of the drug against liver cancer. ABZ was loaded into MCM-41 NPs, and after in vitro characterization, such as size, size distribution, zeta potential, morphology,...

Full description

Bibliographic Details
Main Authors: Mohsen Ghaferi, Warda Zahra, Azim Akbarzadeh, Hasan Ebrahimi Shahmabadi, Seyed Ebrahim Alavi
Format: Article
Language:English
Published: IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund 2022-01-01
Series:EXCLI Journal : Experimental and Clinical Sciences
Subjects:
Online Access:https://www.excli.de/index.php/excli/article/view/4491
Description
Summary:The present study aimed to synthesize albendazole (ABZ)-loaded Mobil Composition of Matter No. 41 (MCM-41 NPs) to increase the efficacy of the drug against liver cancer. ABZ was loaded into MCM-41 NPs, and after in vitro characterization, such as size, size distribution, zeta potential, morphology, chemical composition, thermal profile, drug release, surface and pore volume, and pore size, their biological effects were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) cell migration assays. The results demonstrated that monodispersed and spherical NPs with a size of 220 ± 11.5 and 293 ± 8.7 nm, for MCM-41 NPs and ABZ-loaded MCM-41 NPs, respectively, and drug loading efficiency of 30 % were synthesized. ABZ was loaded physically into MCM-41 NPs, leading to a decrease in surface volume, pore size, and pore volume. Also, MCM-41 NPs could increase the cytotoxicity effects of ABZ by 2.9-fold (IC50 = 23 and 7.9 µM for ABZ and ABZ-loaded MCM-41 NPs, respectively). In addition, both ABZ and ABZ-loaded MCM-41 NPs could restrain the cell migration by 12 %. Overall, the results of the present study suggest evaluating the potency of MCM-41 NPs, as a potent nanoplatform, for ABZ delivery in vivo environment.
ISSN:1611-2156