Delamination Detection and Localization in Vibrating Composite Plates and Shells Using the Inverse Finite Element Method

Delamination damage is one of the most critical damage modes of composite materials. It takes place through the thickness of the laminated composites and does not show subtle surface effects. In the present study, a delamination detection approach based on equivalent von Mises strains is demonstrate...

Full description

Bibliographic Details
Main Authors: Faraz Ganjdoust, Adnan Kefal, Alexander Tessler
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/18/7926
Description
Summary:Delamination damage is one of the most critical damage modes of composite materials. It takes place through the thickness of the laminated composites and does not show subtle surface effects. In the present study, a delamination detection approach based on equivalent von Mises strains is demonstrated for vibrating laminated (i.e., unidirectional fabric) composite plates. In this context, the governing relations of the inverse finite element method were recast according to the refined zigzag theory. Using the in situ strain measurements obtained from the surface and through the thickness of the composite shell, the inverse analysis was performed, and the strain field of the composite shell was reconstructed. The implementation of the proposed methodology is demonstrated for two numerical case studies associated with the harmonic and random vibrations of composite shells. The findings of this study show that the present damage detection method is capable of real-time monitoring of damage and providing information about the exact location, shape, and extent of the delamination damage in the vibrating composite plate. Finally, the robustness of the proposed method in response to resonance and extreme load variations is shown.
ISSN:1424-8220