Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) Force
We report in this paper a novel, inexpensive and flexible method for fabricating micrometer- and nanometer-scale three-dimensional (3D) polymer structures using visible light sources instead of ultra-violet (UV) light sources or lasers. This method also does not require the conventional micro-photol...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2011-12-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-666X/2/4/431/ |
_version_ | 1811301157979553792 |
---|---|
author | Wen J. Li Vincent G. B. Lee Shue Wang Wenfeng Liang Zaili Dong |
author_facet | Wen J. Li Vincent G. B. Lee Shue Wang Wenfeng Liang Zaili Dong |
author_sort | Wen J. Li |
collection | DOAJ |
description | We report in this paper a novel, inexpensive and flexible method for fabricating micrometer- and nanometer-scale three-dimensional (3D) polymer structures using visible light sources instead of ultra-violet (UV) light sources or lasers. This method also does not require the conventional micro-photolithographic technique (i.e., photolithographic masks) for patterning and fabricating polymer structures such as hydrogels. The major materials and methods required for this novel fabrication technology are: (1) any cross-linked network of photoactive polymers (examples of fabricated poly(ethylene glycol) (PEG)-diacrylate hydrogel structures are shown in this paper); (2) an Optically-induced Dielectrophoresis (ODEP) System which includes an “ODEP chip” (i.e., any chip that changes its surface conductivity when exposed to visible light), an optical microscope, a projector, and a computer; and (3) an animator software hosted on a computer that can generate virtual or dynamic patterns which can be projected onto the “ODEP chip” through the use of a projector and a condenser lens. Essentially, by placing a photosensitive polymer solution inside the microfluidic platform formed by the “ODEP chip” bonded to another substrate, and applying an alternating current (a.c.) electrical potential across the polymer solution (typically ~20 Vp-p at 10 kHz), solid polymer micro/nano structures can then be formed on the “ODEP chip” surface when visible-light is projected onto the chip. The 2D lateral geometry (x and y dimensions) and the thickness (height) of the micro/nano structures are dictated by the image geometry of the visible light projected onto the “ODEP chip” and also the time duration of projection. Typically, after an image projection with intensity ranging from ~0.2 to 0.4 mW/cm2 for 10 s, ~200 nm high structures can be formed. In our current system, the thickness of these polymer structures can be controlled to form from ~200 nanometers to ~3 micrometers structures. However, in the in-plane dimensions, only ~7 μm resolution can be achieved now, due to the optical diffraction limit and the physical dimensions of DMD mirrors in the projector. Nevertheless, with higher quality optical components, the in-plane resolution is expected to be sub-micron. |
first_indexed | 2024-04-13T07:03:54Z |
format | Article |
id | doaj.art-fe8ca5cde98a47e29a98d77905acd68f |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-04-13T07:03:54Z |
publishDate | 2011-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-fe8ca5cde98a47e29a98d77905acd68f2022-12-22T02:57:03ZengMDPI AGMicromachines2072-666X2011-12-012443144210.3390/mi2040431Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) ForceWen J. LiVincent G. B. LeeShue WangWenfeng LiangZaili DongWe report in this paper a novel, inexpensive and flexible method for fabricating micrometer- and nanometer-scale three-dimensional (3D) polymer structures using visible light sources instead of ultra-violet (UV) light sources or lasers. This method also does not require the conventional micro-photolithographic technique (i.e., photolithographic masks) for patterning and fabricating polymer structures such as hydrogels. The major materials and methods required for this novel fabrication technology are: (1) any cross-linked network of photoactive polymers (examples of fabricated poly(ethylene glycol) (PEG)-diacrylate hydrogel structures are shown in this paper); (2) an Optically-induced Dielectrophoresis (ODEP) System which includes an “ODEP chip” (i.e., any chip that changes its surface conductivity when exposed to visible light), an optical microscope, a projector, and a computer; and (3) an animator software hosted on a computer that can generate virtual or dynamic patterns which can be projected onto the “ODEP chip” through the use of a projector and a condenser lens. Essentially, by placing a photosensitive polymer solution inside the microfluidic platform formed by the “ODEP chip” bonded to another substrate, and applying an alternating current (a.c.) electrical potential across the polymer solution (typically ~20 Vp-p at 10 kHz), solid polymer micro/nano structures can then be formed on the “ODEP chip” surface when visible-light is projected onto the chip. The 2D lateral geometry (x and y dimensions) and the thickness (height) of the micro/nano structures are dictated by the image geometry of the visible light projected onto the “ODEP chip” and also the time duration of projection. Typically, after an image projection with intensity ranging from ~0.2 to 0.4 mW/cm2 for 10 s, ~200 nm high structures can be formed. In our current system, the thickness of these polymer structures can be controlled to form from ~200 nanometers to ~3 micrometers structures. However, in the in-plane dimensions, only ~7 μm resolution can be achieved now, due to the optical diffraction limit and the physical dimensions of DMD mirrors in the projector. Nevertheless, with higher quality optical components, the in-plane resolution is expected to be sub-micron.http://www.mdpi.com/2072-666X/2/4/431/3D polymer structuresoptically-induced DEPODEP chipmicro-/nano-scale polymer structurespolymer fabrication |
spellingShingle | Wen J. Li Vincent G. B. Lee Shue Wang Wenfeng Liang Zaili Dong Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) Force Micromachines 3D polymer structures optically-induced DEP ODEP chip micro-/nano-scale polymer structures polymer fabrication |
title | Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) Force |
title_full | Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) Force |
title_fullStr | Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) Force |
title_full_unstemmed | Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) Force |
title_short | Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) Force |
title_sort | fabrication of micrometer and nanometer scale polymer structures by visible light induced dielectrophoresis dep force |
topic | 3D polymer structures optically-induced DEP ODEP chip micro-/nano-scale polymer structures polymer fabrication |
url | http://www.mdpi.com/2072-666X/2/4/431/ |
work_keys_str_mv | AT wenjli fabricationofmicrometerandnanometerscalepolymerstructuresbyvisiblelightinduceddielectrophoresisdepforce AT vincentgblee fabricationofmicrometerandnanometerscalepolymerstructuresbyvisiblelightinduceddielectrophoresisdepforce AT shuewang fabricationofmicrometerandnanometerscalepolymerstructuresbyvisiblelightinduceddielectrophoresisdepforce AT wenfengliang fabricationofmicrometerandnanometerscalepolymerstructuresbyvisiblelightinduceddielectrophoresisdepforce AT zailidong fabricationofmicrometerandnanometerscalepolymerstructuresbyvisiblelightinduceddielectrophoresisdepforce |