Investigation on Vertical Position and Sound Velocity Variation for GNSS/Acoustic Seafloor Geodetic Calibration Based on Moving Survey Data

The accuracy of GNSS/Acoustic seafloor geodetic calibration is greatly influenced by the temporal variation of sound velocity, especially in the vertical direction. Aiming at correcting of the unknown parameters related to both the positions and the sound velocity, this paper proposes a step-by-step...

Full description

Bibliographic Details
Main Authors: Rui Shan, Huimin Liu, Shuang Zhao, Haojun Li
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/15/3739
Description
Summary:The accuracy of GNSS/Acoustic seafloor geodetic calibration is greatly influenced by the temporal variation of sound velocity, especially in the vertical direction. Aiming at correcting of the unknown parameters related to both the positions and the sound velocity, this paper proposes a step-by-step inversion scheme based on moving survey data. The proposed method firstly estimates the horizontal normalized travel time delay with sound ray tracing strategy and then computes the horizontal position with circle line observations. We reconstructed an inversion scheme for extracting the surface sound velocity disturbance (SSVD) and corrected the vertical position from cross line data. The SSVD is decomposed into a sum of different period disturbances, and a new SSVD is reconstructed by combining the long period disturbance and short period disturbance. The proposed algorithm is verified by the South China Sea experiment for GNSS/Acoustic seafloor geodetic calibration. The results demonstrate that the new method can take the effects of sound velocity variation into consideration and improve the precision of the vertical position, which is superior to the least squares (LS), the single-difference LS for seafloor geodetic calibration.
ISSN:2072-4292