Research on a Super-Sub-Arc Bivariate Relative Angle Thermal Deformation Testing Method without Pitch Angle Limitation

In light of the current situation where no testing equipment is available for measuring thermal deformation of objects, this paper proposes a novel method for accurate and precise measurement. The method overcomes the limitations of previous approaches that relied on pitch angle. By utilizing the pr...

Full description

Bibliographic Details
Main Authors: Yang Liu, Yaoke Xue, Hu Wang, Yue Pan, Shangmin Lin, Shuifu Ye, Jie Liu
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/17/9725
Description
Summary:In light of the current situation where no testing equipment is available for measuring thermal deformation of objects, this paper proposes a novel method for accurate and precise measurement. The method overcomes the limitations of previous approaches that relied on pitch angle. By utilizing the principle of biplane multiple reflections, a bivariate laser spot displacement analysis algorithm is devised to attain highly precise measurements of bivariate angles. Additionally, a temperature gradient comparison algorithm is introduced to calculate the indicator test results under specific temperature conditions. To validate the effectiveness and reliability of this method, a testing system is constructed and utilized. The results demonstrate that the thermal deformation angle change test achieves an impressive accuracy of 0.015″ and a rate of thermal deformation angle change of 0.3247″/°C. These values are in close agreement with the previously simulated analysis result of 0.359″/°C, with only a relative error of 9.55%. Therefore, the test results confirm the efficacy and reliability of this testing method along with the feasibility of the algorithm processing.
ISSN:2076-3417