Antibacterial and Hemocompatible pH-Responsive Hydrogel for Skin Wound Healing Application: In Vitro Drug Release

The treatment of successive skin wounds necessitates meticulous medical procedures. In the care and treatment of skin wounds, hydrogels produced from natural polymers with controlled drug release play a crucial role. Arabinoxylan is a well-known and widely available biological macromolecule. We prod...

Full description

Bibliographic Details
Main Authors: Muhammad Umar Aslam Khan, Saiful Izwan Abd Razaq, Hassan Mehboob, Sarish Rehman, Wafa Shamsan Al-Arjan, Rashid Amin
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/21/3703
Description
Summary:The treatment of successive skin wounds necessitates meticulous medical procedures. In the care and treatment of skin wounds, hydrogels produced from natural polymers with controlled drug release play a crucial role. Arabinoxylan is a well-known and widely available biological macromolecule. We produced various formulations of blended composite hydrogels (BCHs) from arabinoxylan (ARX), carrageenan (CG), and reduced graphene oxide (rGO) using and cross-linked them with an optimal amount of tetraethyl orthosilicate (TEOS). The structural, morphological, and mechanical behavior of the BCHs samples were determined using Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), mechanical testing, and wetting, respectively. The swelling and degradation assays were performed in phosphate-buffered saline (PBS) solution and aqueous media. Maximum swelling was observed at pH 7 and the least swelling in basic pH regions. All composite hydrogels were found to be hemocompatible. In vitro, silver sulfadiazine release profile in PBS solution was analyzed via the Franz diffusion method, and maximum drug release (87.9%) was observed in 48 h. The drug release kinetics was studied against different mathematical models (zero-order, first-order, Higuchi, Hixson–Crowell, Korsmeyer–Peppas, and Baker–Lonsdale models) and compared their regression coefficient (R<sup>2</sup>) values. It was observed that drug release follows the Baker–Lonsdale model, as it has the highest value (0.989) of R<sup>2</sup>. Hence, the obtained results indicated that, due to optimized swelling, wetting, and degradation, the blended composite hydrogel BCH-3 could be an essential wound dressing biomaterial for sustained drug release for skin wound care and treatment.
ISSN:2073-4360