Biodegradable Preformed Particle Gel (PPG) Made of Natural Chitosan Material for Water Shut-Off Application
Oil and gas extraction frequently produces substantial volumes of produced water, leading to several mechanical and environmental issues. Several methods have been applied over decades, including chemical processes such as in-situ crosslinked polymer gel and preformed particle gel, which are the mos...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/15/8/1961 |
_version_ | 1797603776957251584 |
---|---|
author | Reem Elaf Ahmed Ben Ali Mohammed Saad Ibnelwaleed A. Hussein Hassan Nimir Baojun Bai |
author_facet | Reem Elaf Ahmed Ben Ali Mohammed Saad Ibnelwaleed A. Hussein Hassan Nimir Baojun Bai |
author_sort | Reem Elaf |
collection | DOAJ |
description | Oil and gas extraction frequently produces substantial volumes of produced water, leading to several mechanical and environmental issues. Several methods have been applied over decades, including chemical processes such as in-situ crosslinked polymer gel and preformed particle gel, which are the most effective nowadays. This study developed a green and biodegradable PPG made of PAM and chitosan as a blocking agent for water shutoff, which will contribute to combating the toxicity of several commercially used PPGs. The applicability of chitosan to act as a crosslinker has been confirmed by FTIR spectroscopy and observed by scanning electron microscopy. Extensive swelling capacity measurements and rheological experiments were performed to examine the optimal formulation of PAM/Cs based on several PAM and chitosan concentrations and the effects of typical reservoir conditions, such as salinity, temperature, and pH. The optimum concentrations of PAM with 0.5 wt% chitosan were between 5–9 wt%, while the optimum chitosan amount with 6.5 wt% PAM was in the 0.25–0.5 wt% range, as these concentrations can produce PPGs with high swellability and sufficient strength. The swelling capacity of PAM/Cs is lower in high saline water (HSW) with a TDS of 67.2976 g/L compared with fresh water, which is related to the osmotic pressure gradient between the swelling medium and the PPG. The swelling capacity in freshwater was up to 80.37 g/g, while it is 18.73 g/g in HSW. The storage moduli were higher in HSW than freshwater, with ranges of 1695–5000 Pa and 2053–5989 Pa, respectively. The storage modulus of PAM/Cs samples was higher in a neutral medium (pH = 6), where the fluctuation behavior in different pH conditions is related to electrostatic repulsions and hydrogen bond formation. The increase in swelling capacity caused by the progressive increment in temperature is associated with the amide group’s hydrolysis to carboxylate groups. The sizes of the swollen particles are controllable since they are designed to be 0.63–1.62 mm in DIW and 0.86–1.00 mm in HSW. PAM/Cs showed promising swelling and rheological characteristics while demonstrating long-term thermal and hydrolytic stability in high-temperature and high-salinity conditions. |
first_indexed | 2024-03-11T04:36:53Z |
format | Article |
id | doaj.art-fee3d5aaa8a746e384d29c862b5cdc80 |
institution | Directory Open Access Journal |
issn | 2073-4360 |
language | English |
last_indexed | 2024-03-11T04:36:53Z |
publishDate | 2023-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Polymers |
spelling | doaj.art-fee3d5aaa8a746e384d29c862b5cdc802023-11-17T21:03:00ZengMDPI AGPolymers2073-43602023-04-01158196110.3390/polym15081961Biodegradable Preformed Particle Gel (PPG) Made of Natural Chitosan Material for Water Shut-Off ApplicationReem Elaf0Ahmed Ben Ali1Mohammed Saad2Ibnelwaleed A. Hussein3Hassan Nimir4Baojun Bai5Gas Processing Center, College of Engineering, Qatar University, Doha P.O. Box 2713, QatarGas Processing Center, College of Engineering, Qatar University, Doha P.O. Box 2713, QatarGas Processing Center, College of Engineering, Qatar University, Doha P.O. Box 2713, QatarGas Processing Center, College of Engineering, Qatar University, Doha P.O. Box 2713, QatarDepartment of Chemistry and Earth Sciences, College of Arts and Science, Qatar University, Doha P.O. Box 2713, QatarDepartment of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USAOil and gas extraction frequently produces substantial volumes of produced water, leading to several mechanical and environmental issues. Several methods have been applied over decades, including chemical processes such as in-situ crosslinked polymer gel and preformed particle gel, which are the most effective nowadays. This study developed a green and biodegradable PPG made of PAM and chitosan as a blocking agent for water shutoff, which will contribute to combating the toxicity of several commercially used PPGs. The applicability of chitosan to act as a crosslinker has been confirmed by FTIR spectroscopy and observed by scanning electron microscopy. Extensive swelling capacity measurements and rheological experiments were performed to examine the optimal formulation of PAM/Cs based on several PAM and chitosan concentrations and the effects of typical reservoir conditions, such as salinity, temperature, and pH. The optimum concentrations of PAM with 0.5 wt% chitosan were between 5–9 wt%, while the optimum chitosan amount with 6.5 wt% PAM was in the 0.25–0.5 wt% range, as these concentrations can produce PPGs with high swellability and sufficient strength. The swelling capacity of PAM/Cs is lower in high saline water (HSW) with a TDS of 67.2976 g/L compared with fresh water, which is related to the osmotic pressure gradient between the swelling medium and the PPG. The swelling capacity in freshwater was up to 80.37 g/g, while it is 18.73 g/g in HSW. The storage moduli were higher in HSW than freshwater, with ranges of 1695–5000 Pa and 2053–5989 Pa, respectively. The storage modulus of PAM/Cs samples was higher in a neutral medium (pH = 6), where the fluctuation behavior in different pH conditions is related to electrostatic repulsions and hydrogen bond formation. The increase in swelling capacity caused by the progressive increment in temperature is associated with the amide group’s hydrolysis to carboxylate groups. The sizes of the swollen particles are controllable since they are designed to be 0.63–1.62 mm in DIW and 0.86–1.00 mm in HSW. PAM/Cs showed promising swelling and rheological characteristics while demonstrating long-term thermal and hydrolytic stability in high-temperature and high-salinity conditions.https://www.mdpi.com/2073-4360/15/8/1961preformed particle gelwater shut-offchitosanenvironmentally safeswellingmechanical strength |
spellingShingle | Reem Elaf Ahmed Ben Ali Mohammed Saad Ibnelwaleed A. Hussein Hassan Nimir Baojun Bai Biodegradable Preformed Particle Gel (PPG) Made of Natural Chitosan Material for Water Shut-Off Application Polymers preformed particle gel water shut-off chitosan environmentally safe swelling mechanical strength |
title | Biodegradable Preformed Particle Gel (PPG) Made of Natural Chitosan Material for Water Shut-Off Application |
title_full | Biodegradable Preformed Particle Gel (PPG) Made of Natural Chitosan Material for Water Shut-Off Application |
title_fullStr | Biodegradable Preformed Particle Gel (PPG) Made of Natural Chitosan Material for Water Shut-Off Application |
title_full_unstemmed | Biodegradable Preformed Particle Gel (PPG) Made of Natural Chitosan Material for Water Shut-Off Application |
title_short | Biodegradable Preformed Particle Gel (PPG) Made of Natural Chitosan Material for Water Shut-Off Application |
title_sort | biodegradable preformed particle gel ppg made of natural chitosan material for water shut off application |
topic | preformed particle gel water shut-off chitosan environmentally safe swelling mechanical strength |
url | https://www.mdpi.com/2073-4360/15/8/1961 |
work_keys_str_mv | AT reemelaf biodegradablepreformedparticlegelppgmadeofnaturalchitosanmaterialforwatershutoffapplication AT ahmedbenali biodegradablepreformedparticlegelppgmadeofnaturalchitosanmaterialforwatershutoffapplication AT mohammedsaad biodegradablepreformedparticlegelppgmadeofnaturalchitosanmaterialforwatershutoffapplication AT ibnelwaleedahussein biodegradablepreformedparticlegelppgmadeofnaturalchitosanmaterialforwatershutoffapplication AT hassannimir biodegradablepreformedparticlegelppgmadeofnaturalchitosanmaterialforwatershutoffapplication AT baojunbai biodegradablepreformedparticlegelppgmadeofnaturalchitosanmaterialforwatershutoffapplication |