On the Ulam-Hyers stability of a quadratic functional equation

<p>Abstract</p> <p>The Ulam-Hyers stability problems of the following quadratic equation</p> <p> <display-formula> <m:math name="1029-242X-2011-79-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msup> <m:mrow> <m:mi>...

Full description

Bibliographic Details
Main Authors: Park Won-Gil, Bae Jae-Hyeong, Lee Sang-Baek
Format: Article
Language:English
Published: SpringerOpen 2011-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/2011/1/79
_version_ 1818528412741926912
author Park Won-Gil
Bae Jae-Hyeong
Lee Sang-Baek
author_facet Park Won-Gil
Bae Jae-Hyeong
Lee Sang-Baek
author_sort Park Won-Gil
collection DOAJ
description <p>Abstract</p> <p>The Ulam-Hyers stability problems of the following quadratic equation</p> <p> <display-formula> <m:math name="1029-242X-2011-79-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msup> <m:mrow> <m:mi>r</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>f</m:mi> <m:mfenced separators="" open="(" close=")"> <m:mrow> <m:mfrac> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-bin">+</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>r</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> <m:mo class="MathClass-bin">+</m:mo> <m:msup> <m:mrow> <m:mi>r</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>f</m:mi> <m:mfenced separators="" open="(" close=")"> <m:mrow> <m:mfrac> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-bin">-</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>r</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> <m:mo class="MathClass-rel">=</m:mo> <m:mn>2</m:mn> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:mn>2</m:mn> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:math> </display-formula> </p> <p>where <it>r </it>is a nonzero rational number, shall be treated. The case <it>r </it>= 2 was introduced by J. M. Rassias in 1999. Furthermore, we prove the stability of the quadratic equation by using the fixed point method.</p> <p> <b>2010 Mathematics Subject Classification</b>: 39B22; 39B52; 39B72.</p>
first_indexed 2024-12-11T06:49:27Z
format Article
id doaj.art-fefaed2198554d4781267c28fc7c37e8
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-11T06:49:27Z
publishDate 2011-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-fefaed2198554d4781267c28fc7c37e82022-12-22T01:16:57ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2011-01-012011179On the Ulam-Hyers stability of a quadratic functional equationPark Won-GilBae Jae-HyeongLee Sang-Baek<p>Abstract</p> <p>The Ulam-Hyers stability problems of the following quadratic equation</p> <p> <display-formula> <m:math name="1029-242X-2011-79-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msup> <m:mrow> <m:mi>r</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>f</m:mi> <m:mfenced separators="" open="(" close=")"> <m:mrow> <m:mfrac> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-bin">+</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>r</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> <m:mo class="MathClass-bin">+</m:mo> <m:msup> <m:mrow> <m:mi>r</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>f</m:mi> <m:mfenced separators="" open="(" close=")"> <m:mrow> <m:mfrac> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-bin">-</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>r</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> <m:mo class="MathClass-rel">=</m:mo> <m:mn>2</m:mn> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:mn>2</m:mn> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:math> </display-formula> </p> <p>where <it>r </it>is a nonzero rational number, shall be treated. The case <it>r </it>= 2 was introduced by J. M. Rassias in 1999. Furthermore, we prove the stability of the quadratic equation by using the fixed point method.</p> <p> <b>2010 Mathematics Subject Classification</b>: 39B22; 39B52; 39B72.</p>http://www.journalofinequalitiesandapplications.com/content/2011/1/79Hyers-Ulam stabilityquadratic function
spellingShingle Park Won-Gil
Bae Jae-Hyeong
Lee Sang-Baek
On the Ulam-Hyers stability of a quadratic functional equation
Journal of Inequalities and Applications
Hyers-Ulam stability
quadratic function
title On the Ulam-Hyers stability of a quadratic functional equation
title_full On the Ulam-Hyers stability of a quadratic functional equation
title_fullStr On the Ulam-Hyers stability of a quadratic functional equation
title_full_unstemmed On the Ulam-Hyers stability of a quadratic functional equation
title_short On the Ulam-Hyers stability of a quadratic functional equation
title_sort on the ulam hyers stability of a quadratic functional equation
topic Hyers-Ulam stability
quadratic function
url http://www.journalofinequalitiesandapplications.com/content/2011/1/79
work_keys_str_mv AT parkwongil ontheulamhyersstabilityofaquadraticfunctionalequation
AT baejaehyeong ontheulamhyersstabilityofaquadraticfunctionalequation
AT leesangbaek ontheulamhyersstabilityofaquadraticfunctionalequation