Synthesis of Donor–Acceptor Copolymers Derived from Diketopyrrolopyrrole and Fluorene via Eco-Friendly Direct Arylation: Nonlinear Optical Properties, Transient Absorption Spectroscopy, and Theoretical Modeling

A series of <b>PFDPP</b> copolymers based on fluorene (F) and diketopyrrolopyrrole (DPP) monomers were synthesized via direct arylation polycondensation using Fagnou conditions which involved palladium acetate as catalyst (a gradual catalyst addition of three different percentages were u...

Full description

Bibliographic Details
Main Authors: Jonatan Rodríguez-Rea, Marisol Güizado-Rodríguez, José-Luis Maldonado, Gabriel Ramos-Ortiz, José Ulises Reveles, Carlos Silva, Victor Barba, Esmeralda Monserrat Saucedo-Salazar, María Teresa Rodríguez Hernández
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/11/3855
Description
Summary:A series of <b>PFDPP</b> copolymers based on fluorene (F) and diketopyrrolopyrrole (DPP) monomers were synthesized via direct arylation polycondensation using Fagnou conditions which involved palladium acetate as catalyst (a gradual catalyst addition of three different percentages were used), potassium carbonate as the base, and neodecanoic acid in <i>N</i>, <i>N</i>-dimethylacetamide. This synthesis provides a low cost compared with traditional methods of transition-metal-catalyzed polymerization. Among the different amounts of catalyst used in the present work, 12% was optimal because it gave the highest reaction yield (81.5%) and one of the highest molecular weights (Mn = 13.8 KDa). Copolymers’ chemical structures, molecular weight distributions, and optical and thermal properties were analyzed. The linear optical properties of <b>PFDPP</b> copolymers resulted very similarly independently to the catalyst amounts used in the synthesis of the <b>PFDPP</b> copolymers: two absorptions bands distinctive of donor–acceptor copolymers, Stokes shifts of 41 nm, a good quantum yield of fluorescence around 47%, and an optical bandgap of 1.7 eV were determined. Electronic nonlinearities were observed in these copolymers with a relatively high two-photon absorption cross-section of 621 GM at 950 nm. The dynamics of excited states and aggregation effects were studied in solutions, nanoparticles, and films of <b>PFDPP</b>. Theoretical calculations modeled the ground-state structures of the (<b>PFDPP</b>)<sub>n</sub> copolymers with n = 1 to 4 units, determining the charge distribution by the electrostatic potential and modeling the absorption spectra determining the orbital transitions responsible for the experimentally observed leading bands. Experimental and theoretical structure–properties analysis of these donor–acceptor copolymers allowed finding their best synthesis conditions to use them in optoelectronic applications.
ISSN:1996-1073