Summary: | Abstract Background Alpha 1 Antitrypsin Deficiency (AATD) is a largely underrecognized genetic condition characterized by low Alpha 1 Antitrypsin (AAT) serum levels, resulting from variations in SERPINA1. Many individuals affected by AATD are thought to be undiagnosed, leading to poor patient outcomes. The Z (c.1096G > A; p.Glu366Lys) and S (c.863A > T; p.Glu288Val) deficiency variants are the most frequently found variants in AATD, with the Z variant present in most individuals diagnosed with AATD. However, there are many other less frequent variants known to contribute to lung and/or liver disease in AATD. To identify the most common rare variants associated with AATD, we conducted a systematic literature review with the aim of assessing AATD variation patterns across the world. Methods A systematic literature search was performed to identify published studies reporting AATD/SERPINA1 variants. Study eligibility was assessed for the potential to contain relevant information, with quality assessment and data extraction performed on studies meeting all eligibility criteria. AATD variants were grouped by variant type and linked to the geographical region identified from the reporting article. Results Of the 4945 articles identified by the search string, 864 contained useful information for this study. Most articles came from the United States, followed by the United Kingdom, Germany, Spain, and Italy. Collectively, the articles identified a total of 7631 rare variants and 216 types of rare variant across 80 counties. The F (c.739C > T; p.Arg247Cys) variant was identified 1,281 times and was the most reported known rare variant worldwide, followed by the I (c.187C > T; p.Arg63Cys) variant. Worldwide, there were 1492 Null/rare variants that were unidentified at the time of source article publication and 75 rare novel variants reported only once. Conclusion AATD goes far beyond the Z and S variants, suggesting there may be widespread underdiagnosis of patients with the condition. Each geographical region has its own distinctive variety of AATD variants and, therefore, comprehensive testing is needed to fully understand the true number and type of variants that exist. Comprehensive testing is also needed to ensure accurate diagnosis, optimize treatment strategies, and improve outcomes for patients with AATD.
|