Removal of Antibiotics and Nutrients by Vetiver Grass (<em>Chrysopogon zizanioides</em>) from a Plug Flow Reactor Based Constructed Wetland Model
Overuse of antibiotics has resulted in widespread contamination of the environment and triggered antibiotic resistance in pathogenic bacteria. Conventional wastewater treatment plants (WWTPs) are not equipped to remove antibiotics. Effluents from WWTPs are usually the primary source of antibiotics i...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Toxics |
Subjects: | |
Online Access: | https://www.mdpi.com/2305-6304/9/4/84 |
_version_ | 1797537627955527680 |
---|---|
author | Saumik Panja Dibyendu Sarkar Zhiming Zhang Rupali Datta |
author_facet | Saumik Panja Dibyendu Sarkar Zhiming Zhang Rupali Datta |
author_sort | Saumik Panja |
collection | DOAJ |
description | Overuse of antibiotics has resulted in widespread contamination of the environment and triggered antibiotic resistance in pathogenic bacteria. Conventional wastewater treatment plants (WWTPs) are not equipped to remove antibiotics. Effluents from WWTPs are usually the primary source of antibiotics in aquatic environments. There is an urgent need for cost-effective, environment-friendly technologies to address this issue. Along with antibiotics, nutrients (nitrogen and phosphorus) are also present in conventional WWTP effluents at high concentrations, causing environmental problems like eutrophication. In this study, we tested vetiver grass in a plug flow reactor-based constructed wetland model in a greenhouse setup for removing antibiotics ciprofloxacin (CIP) and tetracycline (TTC), and nutrients, N and P, from secondary wastewater effluent. The constructed wetland was designed based on a previous batch reaction kinetics study and reached a steady-state in 7 days. The measured concentrations of antibiotics were generally consistent with the modeling predictions using first-order reaction kinetics. Vetiver grass significantly (<i>p</i> < 0.05) removed 93% and 97% of CIP and TTC (initial concentrations of 10 mg/L), simultaneously with 93% and 84% nitrogen and phosphorus, respectively. Results show that using vetiver grass in constructed wetlands could be a viable green technology for the removal of antibiotics and nutrients from wastewater. |
first_indexed | 2024-03-10T12:18:53Z |
format | Article |
id | doaj.art-ff04ca7f1be8483cbf98e503b06872a5 |
institution | Directory Open Access Journal |
issn | 2305-6304 |
language | English |
last_indexed | 2024-03-10T12:18:53Z |
publishDate | 2021-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Toxics |
spelling | doaj.art-ff04ca7f1be8483cbf98e503b06872a52023-11-21T15:43:01ZengMDPI AGToxics2305-63042021-04-01948410.3390/toxics9040084Removal of Antibiotics and Nutrients by Vetiver Grass (<em>Chrysopogon zizanioides</em>) from a Plug Flow Reactor Based Constructed Wetland ModelSaumik Panja0Dibyendu Sarkar1Zhiming Zhang2Rupali Datta3Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USADepartment of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USADepartment of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USADepartment of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USAOveruse of antibiotics has resulted in widespread contamination of the environment and triggered antibiotic resistance in pathogenic bacteria. Conventional wastewater treatment plants (WWTPs) are not equipped to remove antibiotics. Effluents from WWTPs are usually the primary source of antibiotics in aquatic environments. There is an urgent need for cost-effective, environment-friendly technologies to address this issue. Along with antibiotics, nutrients (nitrogen and phosphorus) are also present in conventional WWTP effluents at high concentrations, causing environmental problems like eutrophication. In this study, we tested vetiver grass in a plug flow reactor-based constructed wetland model in a greenhouse setup for removing antibiotics ciprofloxacin (CIP) and tetracycline (TTC), and nutrients, N and P, from secondary wastewater effluent. The constructed wetland was designed based on a previous batch reaction kinetics study and reached a steady-state in 7 days. The measured concentrations of antibiotics were generally consistent with the modeling predictions using first-order reaction kinetics. Vetiver grass significantly (<i>p</i> < 0.05) removed 93% and 97% of CIP and TTC (initial concentrations of 10 mg/L), simultaneously with 93% and 84% nitrogen and phosphorus, respectively. Results show that using vetiver grass in constructed wetlands could be a viable green technology for the removal of antibiotics and nutrients from wastewater.https://www.mdpi.com/2305-6304/9/4/84vetiver grassphytoremediationconstructed wetlandantibioticsnutrients |
spellingShingle | Saumik Panja Dibyendu Sarkar Zhiming Zhang Rupali Datta Removal of Antibiotics and Nutrients by Vetiver Grass (<em>Chrysopogon zizanioides</em>) from a Plug Flow Reactor Based Constructed Wetland Model Toxics vetiver grass phytoremediation constructed wetland antibiotics nutrients |
title | Removal of Antibiotics and Nutrients by Vetiver Grass (<em>Chrysopogon zizanioides</em>) from a Plug Flow Reactor Based Constructed Wetland Model |
title_full | Removal of Antibiotics and Nutrients by Vetiver Grass (<em>Chrysopogon zizanioides</em>) from a Plug Flow Reactor Based Constructed Wetland Model |
title_fullStr | Removal of Antibiotics and Nutrients by Vetiver Grass (<em>Chrysopogon zizanioides</em>) from a Plug Flow Reactor Based Constructed Wetland Model |
title_full_unstemmed | Removal of Antibiotics and Nutrients by Vetiver Grass (<em>Chrysopogon zizanioides</em>) from a Plug Flow Reactor Based Constructed Wetland Model |
title_short | Removal of Antibiotics and Nutrients by Vetiver Grass (<em>Chrysopogon zizanioides</em>) from a Plug Flow Reactor Based Constructed Wetland Model |
title_sort | removal of antibiotics and nutrients by vetiver grass em chrysopogon zizanioides em from a plug flow reactor based constructed wetland model |
topic | vetiver grass phytoremediation constructed wetland antibiotics nutrients |
url | https://www.mdpi.com/2305-6304/9/4/84 |
work_keys_str_mv | AT saumikpanja removalofantibioticsandnutrientsbyvetivergrassemchrysopogonzizanioidesemfromaplugflowreactorbasedconstructedwetlandmodel AT dibyendusarkar removalofantibioticsandnutrientsbyvetivergrassemchrysopogonzizanioidesemfromaplugflowreactorbasedconstructedwetlandmodel AT zhimingzhang removalofantibioticsandnutrientsbyvetivergrassemchrysopogonzizanioidesemfromaplugflowreactorbasedconstructedwetlandmodel AT rupalidatta removalofantibioticsandnutrientsbyvetivergrassemchrysopogonzizanioidesemfromaplugflowreactorbasedconstructedwetlandmodel |