On powers of <inline-formula><graphic file="1029-242X-2000-892676-i1.gif"/></inline-formula>-hyponormal and log-hyponormal operators

<p/> <p>A bounded linear operator <inline-formula><graphic file="1029-242X-2000-892676-i2.gif"/></inline-formula>on a Hilbert space <inline-formula><graphic file="1029-242X-2000-892676-i3.gif"/></inline-formula> is said to be <in...

Full description

Bibliographic Details
Main Authors: Furuta Takayuki, Yanagida Masahiro
Format: Article
Language:English
Published: SpringerOpen 2000-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/5/892676
_version_ 1818487153035837440
author Furuta Takayuki
Yanagida Masahiro
author_facet Furuta Takayuki
Yanagida Masahiro
author_sort Furuta Takayuki
collection DOAJ
description <p/> <p>A bounded linear operator <inline-formula><graphic file="1029-242X-2000-892676-i2.gif"/></inline-formula>on a Hilbert space <inline-formula><graphic file="1029-242X-2000-892676-i3.gif"/></inline-formula> is said to be <inline-formula><graphic file="1029-242X-2000-892676-i4.gif"/></inline-formula>-hyponormal for <inline-formula><graphic file="1029-242X-2000-892676-i5.gif"/></inline-formula> if <inline-formula><graphic file="1029-242X-2000-892676-i6.gif"/></inline-formula>, and <inline-formula><graphic file="1029-242X-2000-892676-i7.gif"/></inline-formula> is said to be log-hyponormal if <inline-formula><graphic file="1029-242X-2000-892676-i8.gif"/></inline-formula> is invertible and <inline-formula><graphic file="1029-242X-2000-892676-i9.gif"/></inline-formula>. Firstly, we shall show the following extension of our previous result: If <inline-formula><graphic file="1029-242X-2000-892676-i10.gif"/></inline-formula> is <inline-formula><graphic file="1029-242X-2000-892676-i11.gif"/></inline-formula>-hyponormal for <inline-formula><graphic file="1029-242X-2000-892676-i12.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2000-892676-i13.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2000-892676-i14.gif"/></inline-formula> hold for all positive integer <inline-formula><graphic file="1029-242X-2000-892676-i15.gif"/></inline-formula>. Secondly, we shall discuss the best possibilities of the following parallel result for log-hypponormal operators by Yamazaki: If <inline-formula><graphic file="1029-242X-2000-892676-i16.gif"/></inline-formula> is log-hyponormal, then <inline-formula><graphic file="1029-242X-2000-892676-i17.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2000-892676-i18.gif"/></inline-formula> hold for all positive integer <inline-formula><graphic file="1029-242X-2000-892676-i19.gif"/></inline-formula>.</p>
first_indexed 2024-12-10T16:33:52Z
format Article
id doaj.art-ff08e52165f14ed9b038b0ad7d1b466f
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-10T16:33:52Z
publishDate 2000-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-ff08e52165f14ed9b038b0ad7d1b466f2022-12-22T01:41:29ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2000-01-0120004892676On powers of <inline-formula><graphic file="1029-242X-2000-892676-i1.gif"/></inline-formula>-hyponormal and log-hyponormal operatorsFuruta TakayukiYanagida Masahiro<p/> <p>A bounded linear operator <inline-formula><graphic file="1029-242X-2000-892676-i2.gif"/></inline-formula>on a Hilbert space <inline-formula><graphic file="1029-242X-2000-892676-i3.gif"/></inline-formula> is said to be <inline-formula><graphic file="1029-242X-2000-892676-i4.gif"/></inline-formula>-hyponormal for <inline-formula><graphic file="1029-242X-2000-892676-i5.gif"/></inline-formula> if <inline-formula><graphic file="1029-242X-2000-892676-i6.gif"/></inline-formula>, and <inline-formula><graphic file="1029-242X-2000-892676-i7.gif"/></inline-formula> is said to be log-hyponormal if <inline-formula><graphic file="1029-242X-2000-892676-i8.gif"/></inline-formula> is invertible and <inline-formula><graphic file="1029-242X-2000-892676-i9.gif"/></inline-formula>. Firstly, we shall show the following extension of our previous result: If <inline-formula><graphic file="1029-242X-2000-892676-i10.gif"/></inline-formula> is <inline-formula><graphic file="1029-242X-2000-892676-i11.gif"/></inline-formula>-hyponormal for <inline-formula><graphic file="1029-242X-2000-892676-i12.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2000-892676-i13.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2000-892676-i14.gif"/></inline-formula> hold for all positive integer <inline-formula><graphic file="1029-242X-2000-892676-i15.gif"/></inline-formula>. Secondly, we shall discuss the best possibilities of the following parallel result for log-hypponormal operators by Yamazaki: If <inline-formula><graphic file="1029-242X-2000-892676-i16.gif"/></inline-formula> is log-hyponormal, then <inline-formula><graphic file="1029-242X-2000-892676-i17.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2000-892676-i18.gif"/></inline-formula> hold for all positive integer <inline-formula><graphic file="1029-242X-2000-892676-i19.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/5/892676<it>p</it>-Hyponormal operatorLog-hyponormal operatorFuruta inequality
spellingShingle Furuta Takayuki
Yanagida Masahiro
On powers of <inline-formula><graphic file="1029-242X-2000-892676-i1.gif"/></inline-formula>-hyponormal and log-hyponormal operators
Journal of Inequalities and Applications
<it>p</it>-Hyponormal operator
Log-hyponormal operator
Furuta inequality
title On powers of <inline-formula><graphic file="1029-242X-2000-892676-i1.gif"/></inline-formula>-hyponormal and log-hyponormal operators
title_full On powers of <inline-formula><graphic file="1029-242X-2000-892676-i1.gif"/></inline-formula>-hyponormal and log-hyponormal operators
title_fullStr On powers of <inline-formula><graphic file="1029-242X-2000-892676-i1.gif"/></inline-formula>-hyponormal and log-hyponormal operators
title_full_unstemmed On powers of <inline-formula><graphic file="1029-242X-2000-892676-i1.gif"/></inline-formula>-hyponormal and log-hyponormal operators
title_short On powers of <inline-formula><graphic file="1029-242X-2000-892676-i1.gif"/></inline-formula>-hyponormal and log-hyponormal operators
title_sort on powers of inline formula graphic file 1029 242x 2000 892676 i1 gif inline formula hyponormal and log hyponormal operators
topic <it>p</it>-Hyponormal operator
Log-hyponormal operator
Furuta inequality
url http://www.journalofinequalitiesandapplications.com/content/5/892676
work_keys_str_mv AT furutatakayuki onpowersofinlineformulagraphicfile1029242x2000892676i1gifinlineformulahyponormalandloghyponormaloperators
AT yanagidamasahiro onpowersofinlineformulagraphicfile1029242x2000892676i1gifinlineformulahyponormalandloghyponormaloperators