Summary: | Abstract We investigate Friedmann–Lamaitre–Robertson–Walker (FLRW) models with modified Chaplygin gas and cosmological constant, using dynamical system methods. We assume $$p=(\gamma -1)\mu -\dfrac{A}{\mu ^\alpha }$$ p = ( γ - 1 ) μ - A μ α as equation of state where $$\mu$$ μ is the matter-energy density, p is the pressure, $$\alpha$$ α is a parameter which can take on values $$0<\alpha \le 1$$ 0 < α ≤ 1 as well as A and $$\gamma$$ γ are positive constants. We draw the state spaces and analyze the nature of the singularity at the beginning, as well as the fate of the universe in the far future. In particular, we address the question whether there is a solution which is stable for all the cases.
|