Summary: | Diabetic wounds are serious complications caused by diabetes mellitus (DM), which are further exacerbated by angiogenesis disorders and prolonged inflammation. Injectable platelet-rich fibrin (i-PRF) is rich in growth factors (GFs) and has been used for the repair and regeneration of diabetic wounds; however, direct application of i-PRF has certain disadvantages, including the instability of the bioactive molecules. Sericin hydrogel, fabricated by silkworm-derived sericin, is a biocompatible material that has anti-inflammatory and healing-promoting properties. Therefore, in this study, we developed a novel hydrogel (named sericin/i-PRF hydrogel) using a simple one-step activation method. The in vitro studies showed that the rapid injectability of the sericin/i-PRF hydrogel allows it to adapt to the irregular shape of the wounds. Additionally, sericin hydrogel could prolong the release of i-PRF-derived bioactive GFs in the sericin/i-PRF hydrogel. Furthermore, sericin/i-PRF hydrogel effectively repaired diabetic wounds, promoted angiogenesis, and reduced inflammation levels in the diabetic wounds of nude mice. These results demonstrate that the sericin/i-PRF hydrogel is a promising agent for diabetic wound healing.
|