Variation of Fracture Toughness with Biaxial Load and T-Stress under Mode I Condition

The effect of a biaxial load on brittle fractures of solids under predominantly elastic deformation and mode I loading conditions is studied in this article. A cross-shaped specimen is used in this work, and the variation of T-stress is achieved by changing the load applied to the arm parallel to th...

Full description

Bibliographic Details
Main Authors: Chentong Chen, Zhanfeng Li, Chang Xu, Ze Zhu, Sheng Zou
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/18/9319
Description
Summary:The effect of a biaxial load on brittle fractures of solids under predominantly elastic deformation and mode I loading conditions is studied in this article. A cross-shaped specimen is used in this work, and the variation of T-stress is achieved by changing the load applied to the arm parallel to the crack. In the tests, under a series of different loads parallel to the crack, a series of load values perpendicular to the crack are obtained, and the stress intensity factor is calculated by FEM (Finite Element Analysis). The test data demonstrate that the apparent fracture toughness of the material varies with the load parallel to the crack and the T-stress, since the T-stress is directly related to the load parallel to the crack. If only the first term of the Williams series solution is used to describe the stress field near the crack tip, the variation of KC is unexplained; therefore, more than one term in the Williams series solutions is used to develop the theory of biaxial effect on solid fracture behavior. The fracture criterion based on this consideration is also used to predict crack instability or crack curving under mode I load conditions. Experimental data are presented and compared with the theory.
ISSN:2076-3417