On the decaying-sterile-neutrino solution to the electron (anti)neutrino appearance anomalies

Abstract We explore the hypothesis that the unexplained data from Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments are evidence for a new, heavy neutrino mass-eigenstate that mixes with the muon-type neutrino and decays into an electron-type neutrino and a new, very light scala...

Full description

Bibliographic Details
Main Authors: André de Gouvêa, O. L. G. Peres, Suprabh Prakash, G. V. Stenico
Format: Article
Language:English
Published: SpringerOpen 2020-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP07(2020)141
Description
Summary:Abstract We explore the hypothesis that the unexplained data from Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments are evidence for a new, heavy neutrino mass-eigenstate that mixes with the muon-type neutrino and decays into an electron-type neutrino and a new, very light scalar particle. We consider two different decay scenarios, one with Majorana neutrinos, one with Dirac neutrinos; both fit the data equally well. We find a reasonable, albeit not excellent, fit to the data of MiniBooNE and LSND. The decaying-sterile-neutrino hypothesis, however, cleanly evades constraints from disappearance searches and precision measurements of leptonic meson decays, as long as 1 MeV ≳ m 4 ≳ 10 keV. The Short-Baseline Neutrino Program (SBN) at Fermilab should be able to definitively test the decaying-sterile-neutrino hypothesis.
ISSN:1029-8479