Robustness Assessment of Wind Power Generation Considering Rigorous Security Constraints for Power System: A Hybrid RLO-IGDT Approach

Fossil fuel depletion and environmental pollution problems promote development of renewable energy (RE) globally. With increasing penetration of RE, operation security and economy of power systems (PS) are greatly impacted by fluctuation and intermittence of renewable power. In this paper, informati...

Full description

Bibliographic Details
Main Authors: Lianyong Zuo, Shengshi Wang, Yong Sun, Shichang Cui, Jiakun Fang, Xiaomeng Ai, Baoju Li, Chengliang Hao, Jinyu Wen
Format: Article
Language:English
Published: China electric power research institute 2024-01-01
Series:CSEE Journal of Power and Energy Systems
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10375963/
Description
Summary:Fossil fuel depletion and environmental pollution problems promote development of renewable energy (RE) globally. With increasing penetration of RE, operation security and economy of power systems (PS) are greatly impacted by fluctuation and intermittence of renewable power. In this paper, information gap decision theory (IGDT) is adapted to handle uncertainty of wind power generation. Based on conventional IGDT method, linear regulation strategy (LRS) and robust linear optimization (RLO) method are integrated to reformulate the model for rigorously considering security constraints. Then a robustness assessment method based on hybrid RLO-IGDT approach is proposed for analyzing robustness and economic performance of PS. Moreover, a risk-averse linearization method is adapted to convert the proposed assessment model into a mixed integer linear programming (MILP) problem for convenient optimization without robustness loss. Finally, results of case studies validate superiority of proposed method in guaranteeing operation security rigorously and effectiveness in assessment of RSR for PS without overestimation.
ISSN:2096-0042