Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis

We analyze the cooling and feedback properties of 48 galaxy clusters at redshifts 0.4 < z < 1.3 selected from the South Pole Telescope (SPT) catalogs to evolve like the progenitors of massive and well-studied systems at z ∼ 0. We estimate the radio power at the brightest cluster galaxy (BCG) l...

Full description

Bibliographic Details
Main Authors: F. Ruppin, M. McDonald, J. Hlavacek-Larrondo, M. Bayliss, L. E. Bleem, M. Calzadilla, A. C. Edge, M. D. Filipović, B. Floyd, G. Garmire, G. Khullar, K. J. Kim, R. Kraft, G. Mahler, R. P. Norris, A. O’Brien, C. L. Reichardt, T. Somboonpanyakul, A. A. Stark, N. Tothill
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/acc38d
_version_ 1797699761147478016
author F. Ruppin
M. McDonald
J. Hlavacek-Larrondo
M. Bayliss
L. E. Bleem
M. Calzadilla
A. C. Edge
M. D. Filipović
B. Floyd
G. Garmire
G. Khullar
K. J. Kim
R. Kraft
G. Mahler
R. P. Norris
A. O’Brien
C. L. Reichardt
T. Somboonpanyakul
A. A. Stark
N. Tothill
author_facet F. Ruppin
M. McDonald
J. Hlavacek-Larrondo
M. Bayliss
L. E. Bleem
M. Calzadilla
A. C. Edge
M. D. Filipović
B. Floyd
G. Garmire
G. Khullar
K. J. Kim
R. Kraft
G. Mahler
R. P. Norris
A. O’Brien
C. L. Reichardt
T. Somboonpanyakul
A. A. Stark
N. Tothill
author_sort F. Ruppin
collection DOAJ
description We analyze the cooling and feedback properties of 48 galaxy clusters at redshifts 0.4 < z < 1.3 selected from the South Pole Telescope (SPT) catalogs to evolve like the progenitors of massive and well-studied systems at z ∼ 0. We estimate the radio power at the brightest cluster galaxy (BCG) location of each cluster from an analysis of Australia Telescope Compact Array data. Assuming that the scaling relation between the radio power and active galactic nucleus (AGN) cavity power P _cav observed at low redshift does not evolve with redshift, we use these measurements in order to estimate the expected AGN cavity power in the core of each system. We estimate the X-ray luminosity within the cooling radius L _cool of each cluster from a joint analysis of the available Chandra X-ray and SPT Sunyaev–Zel’dovich (SZ) data. This allows us to characterize the redshift evolution of the P _cav / L _cool ratio. When combined with low-redshift results, these constraints enable investigations of the properties of the feedback–cooling cycle across 9 Gyr of cluster growth. We model the redshift evolution of this ratio measured for cool-core clusters by a log-normal distribution $\mathrm{Log}$ - ${ \mathcal N }(\alpha +\beta z,{\sigma }^{2})$ and constrain the slope of the mean evolution to β = −0.05 ± 0.47. This analysis improves the constraints on the slope of this relation by a factor of two. We find no evidence of redshift evolution of the feedback–cooling equilibrium in these clusters, which suggests that the onset of radio-mode feedback took place at an early stage of cluster formation. High values of P _cav / L _cool are found at the BCG location of noncool-core clusters, which might suggest that the timescales of the AGN feedback cycle and the cool core–noncool core transition are different. This work demonstrates that the joint analysis of radio, SZ, and X-ray data solidifies the investigation of AGN feedback at high redshifts.
first_indexed 2024-03-12T04:13:30Z
format Article
id doaj.art-ff4cb798566e4b1a8d7771ab86c5cda2
institution Directory Open Access Journal
issn 1538-4357
language English
last_indexed 2024-03-12T04:13:30Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj.art-ff4cb798566e4b1a8d7771ab86c5cda22023-09-03T10:53:00ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-0194814910.3847/1538-4357/acc38dRedshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA AnalysisF. Ruppin0https://orcid.org/0000-0002-0955-8954M. McDonald1https://orcid.org/0000-0001-5226-8349J. Hlavacek-Larrondo2https://orcid.org/0000-0001-7271-7340M. Bayliss3https://orcid.org/0000-0003-1074-4807L. E. Bleem4https://orcid.org/0000-0001-7665-5079M. Calzadilla5https://orcid.org/0000-0002-2238-2105A. C. Edge6https://orcid.org/0000-0002-3398-6916M. D. Filipović7https://orcid.org/0000-0002-4990-9288B. Floyd8https://orcid.org/0000-0003-4175-571XG. Garmire9https://orcid.org/0000-0002-7371-5416G. Khullar10https://orcid.org/0000-0002-3475-7648K. J. Kim11https://orcid.org/0000-0001-6505-0293R. Kraft12https://orcid.org/0000-0002-0765-0511G. Mahler13https://orcid.org/0000-0003-3266-2001R. P. Norris14A. O’Brien15https://orcid.org/0000-0003-4609-2791C. L. Reichardt16https://orcid.org/0000-0003-2226-9169T. Somboonpanyakul17https://orcid.org/0000-0003-3521-3631A. A. Stark18https://orcid.org/0000-0002-2718-9996N. Tothill19https://orcid.org/0000-0002-9931-5162Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, MA 02139, USA f.ruppin@ip2i.in2p3.fr; Univ. Lyon , Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, FranceKavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, MA 02139, USA f.ruppin@ip2i.in2p3.frDépartement de Physique, Université de Montréal , C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, CanadaDepartment of Physics, University of Cincinnati , Cincinnati, OH 45221, USAHigh Energy Physics Division , Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA; Kavli Institute for Cosmological Physics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USAKavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, MA 02139, USA f.ruppin@ip2i.in2p3.frDepartment of Physics, University of Durham , South Road, Durham, DH1 3LE, UKSchool of Science, Western Sydney University , Locked Bag 1797, Penrith, NSW 2751, AustraliaDepartment of Physics and Astronomy, University of Missouri-Kansas City , 5110 Rockhill Road, Kansas City, MO 64110, USAHuntingdon Institute for X-ray Astronomy , LLC, USAKavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, MA 02139, USA f.ruppin@ip2i.in2p3.fr; Kavli Institute for Cosmological Physics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USA; Department of Astronomy and Astrophysics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USADepartment of Physics, University of Cincinnati , Cincinnati, OH 45221, USAHarvard-Smithsonian Center for Astrophysics , 60 Garden Street, Cambridge, MA 02138, USACentre for Extragalactic Astronomy, Durham University , South Road, Durham, DH1 3LE, UK; Institute for Computational Cosmology, Durham University , South Road, Durham, DH1 3LE, UKSchool of Science, Western Sydney University , Locked Bag 1797, Penrith, NSW 2751, Australia; CSIRO Astronomy & Space Science , P.O. Box 76, Epping, NSW 1710, AustraliaCenter for Gravitation, Cosmology, and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee , P.O. Box 413, Milwaukee, WI 53201, USASchool of Physics, University of Melbourne , Parkville, VIC 3010, AustraliaKavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University , Stanford, CA 94305, USAHarvard-Smithsonian Center for Astrophysics , 60 Garden Street, Cambridge, MA 02138, USASchool of Science, Western Sydney University , Locked Bag 1797, Penrith, NSW 2751, AustraliaWe analyze the cooling and feedback properties of 48 galaxy clusters at redshifts 0.4 < z < 1.3 selected from the South Pole Telescope (SPT) catalogs to evolve like the progenitors of massive and well-studied systems at z ∼ 0. We estimate the radio power at the brightest cluster galaxy (BCG) location of each cluster from an analysis of Australia Telescope Compact Array data. Assuming that the scaling relation between the radio power and active galactic nucleus (AGN) cavity power P _cav observed at low redshift does not evolve with redshift, we use these measurements in order to estimate the expected AGN cavity power in the core of each system. We estimate the X-ray luminosity within the cooling radius L _cool of each cluster from a joint analysis of the available Chandra X-ray and SPT Sunyaev–Zel’dovich (SZ) data. This allows us to characterize the redshift evolution of the P _cav / L _cool ratio. When combined with low-redshift results, these constraints enable investigations of the properties of the feedback–cooling cycle across 9 Gyr of cluster growth. We model the redshift evolution of this ratio measured for cool-core clusters by a log-normal distribution $\mathrm{Log}$ - ${ \mathcal N }(\alpha +\beta z,{\sigma }^{2})$ and constrain the slope of the mean evolution to β = −0.05 ± 0.47. This analysis improves the constraints on the slope of this relation by a factor of two. We find no evidence of redshift evolution of the feedback–cooling equilibrium in these clusters, which suggests that the onset of radio-mode feedback took place at an early stage of cluster formation. High values of P _cav / L _cool are found at the BCG location of noncool-core clusters, which might suggest that the timescales of the AGN feedback cycle and the cool core–noncool core transition are different. This work demonstrates that the joint analysis of radio, SZ, and X-ray data solidifies the investigation of AGN feedback at high redshifts.https://doi.org/10.3847/1538-4357/acc38dGalaxy clustersActive galactic nucleiX-ray astronomySunyaev-Zeldovich effectRadio active galactic nuclei
spellingShingle F. Ruppin
M. McDonald
J. Hlavacek-Larrondo
M. Bayliss
L. E. Bleem
M. Calzadilla
A. C. Edge
M. D. Filipović
B. Floyd
G. Garmire
G. Khullar
K. J. Kim
R. Kraft
G. Mahler
R. P. Norris
A. O’Brien
C. L. Reichardt
T. Somboonpanyakul
A. A. Stark
N. Tothill
Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis
The Astrophysical Journal
Galaxy clusters
Active galactic nuclei
X-ray astronomy
Sunyaev-Zeldovich effect
Radio active galactic nuclei
title Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis
title_full Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis
title_fullStr Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis
title_full_unstemmed Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis
title_short Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis
title_sort redshift evolution of the feedback cooling equilibrium in the core of 48 spt galaxy clusters a joint chandra spt atca analysis
topic Galaxy clusters
Active galactic nuclei
X-ray astronomy
Sunyaev-Zeldovich effect
Radio active galactic nuclei
url https://doi.org/10.3847/1538-4357/acc38d
work_keys_str_mv AT fruppin redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT mmcdonald redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT jhlavaceklarrondo redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT mbayliss redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT lebleem redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT mcalzadilla redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT acedge redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT mdfilipovic redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT bfloyd redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT ggarmire redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT gkhullar redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT kjkim redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT rkraft redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT gmahler redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT rpnorris redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT aobrien redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT clreichardt redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT tsomboonpanyakul redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT aastark redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis
AT ntothill redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis