Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis
We analyze the cooling and feedback properties of 48 galaxy clusters at redshifts 0.4 < z < 1.3 selected from the South Pole Telescope (SPT) catalogs to evolve like the progenitors of massive and well-studied systems at z ∼ 0. We estimate the radio power at the brightest cluster galaxy (BCG) l...
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | The Astrophysical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4357/acc38d |
_version_ | 1797699761147478016 |
---|---|
author | F. Ruppin M. McDonald J. Hlavacek-Larrondo M. Bayliss L. E. Bleem M. Calzadilla A. C. Edge M. D. Filipović B. Floyd G. Garmire G. Khullar K. J. Kim R. Kraft G. Mahler R. P. Norris A. O’Brien C. L. Reichardt T. Somboonpanyakul A. A. Stark N. Tothill |
author_facet | F. Ruppin M. McDonald J. Hlavacek-Larrondo M. Bayliss L. E. Bleem M. Calzadilla A. C. Edge M. D. Filipović B. Floyd G. Garmire G. Khullar K. J. Kim R. Kraft G. Mahler R. P. Norris A. O’Brien C. L. Reichardt T. Somboonpanyakul A. A. Stark N. Tothill |
author_sort | F. Ruppin |
collection | DOAJ |
description | We analyze the cooling and feedback properties of 48 galaxy clusters at redshifts 0.4 < z < 1.3 selected from the South Pole Telescope (SPT) catalogs to evolve like the progenitors of massive and well-studied systems at z ∼ 0. We estimate the radio power at the brightest cluster galaxy (BCG) location of each cluster from an analysis of Australia Telescope Compact Array data. Assuming that the scaling relation between the radio power and active galactic nucleus (AGN) cavity power P _cav observed at low redshift does not evolve with redshift, we use these measurements in order to estimate the expected AGN cavity power in the core of each system. We estimate the X-ray luminosity within the cooling radius L _cool of each cluster from a joint analysis of the available Chandra X-ray and SPT Sunyaev–Zel’dovich (SZ) data. This allows us to characterize the redshift evolution of the P _cav / L _cool ratio. When combined with low-redshift results, these constraints enable investigations of the properties of the feedback–cooling cycle across 9 Gyr of cluster growth. We model the redshift evolution of this ratio measured for cool-core clusters by a log-normal distribution $\mathrm{Log}$ - ${ \mathcal N }(\alpha +\beta z,{\sigma }^{2})$ and constrain the slope of the mean evolution to β = −0.05 ± 0.47. This analysis improves the constraints on the slope of this relation by a factor of two. We find no evidence of redshift evolution of the feedback–cooling equilibrium in these clusters, which suggests that the onset of radio-mode feedback took place at an early stage of cluster formation. High values of P _cav / L _cool are found at the BCG location of noncool-core clusters, which might suggest that the timescales of the AGN feedback cycle and the cool core–noncool core transition are different. This work demonstrates that the joint analysis of radio, SZ, and X-ray data solidifies the investigation of AGN feedback at high redshifts. |
first_indexed | 2024-03-12T04:13:30Z |
format | Article |
id | doaj.art-ff4cb798566e4b1a8d7771ab86c5cda2 |
institution | Directory Open Access Journal |
issn | 1538-4357 |
language | English |
last_indexed | 2024-03-12T04:13:30Z |
publishDate | 2023-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astrophysical Journal |
spelling | doaj.art-ff4cb798566e4b1a8d7771ab86c5cda22023-09-03T10:53:00ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-0194814910.3847/1538-4357/acc38dRedshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA AnalysisF. Ruppin0https://orcid.org/0000-0002-0955-8954M. McDonald1https://orcid.org/0000-0001-5226-8349J. Hlavacek-Larrondo2https://orcid.org/0000-0001-7271-7340M. Bayliss3https://orcid.org/0000-0003-1074-4807L. E. Bleem4https://orcid.org/0000-0001-7665-5079M. Calzadilla5https://orcid.org/0000-0002-2238-2105A. C. Edge6https://orcid.org/0000-0002-3398-6916M. D. Filipović7https://orcid.org/0000-0002-4990-9288B. Floyd8https://orcid.org/0000-0003-4175-571XG. Garmire9https://orcid.org/0000-0002-7371-5416G. Khullar10https://orcid.org/0000-0002-3475-7648K. J. Kim11https://orcid.org/0000-0001-6505-0293R. Kraft12https://orcid.org/0000-0002-0765-0511G. Mahler13https://orcid.org/0000-0003-3266-2001R. P. Norris14A. O’Brien15https://orcid.org/0000-0003-4609-2791C. L. Reichardt16https://orcid.org/0000-0003-2226-9169T. Somboonpanyakul17https://orcid.org/0000-0003-3521-3631A. A. Stark18https://orcid.org/0000-0002-2718-9996N. Tothill19https://orcid.org/0000-0002-9931-5162Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, MA 02139, USA f.ruppin@ip2i.in2p3.fr; Univ. Lyon , Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, FranceKavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, MA 02139, USA f.ruppin@ip2i.in2p3.frDépartement de Physique, Université de Montréal , C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, CanadaDepartment of Physics, University of Cincinnati , Cincinnati, OH 45221, USAHigh Energy Physics Division , Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA; Kavli Institute for Cosmological Physics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USAKavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, MA 02139, USA f.ruppin@ip2i.in2p3.frDepartment of Physics, University of Durham , South Road, Durham, DH1 3LE, UKSchool of Science, Western Sydney University , Locked Bag 1797, Penrith, NSW 2751, AustraliaDepartment of Physics and Astronomy, University of Missouri-Kansas City , 5110 Rockhill Road, Kansas City, MO 64110, USAHuntingdon Institute for X-ray Astronomy , LLC, USAKavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, MA 02139, USA f.ruppin@ip2i.in2p3.fr; Kavli Institute for Cosmological Physics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USA; Department of Astronomy and Astrophysics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USADepartment of Physics, University of Cincinnati , Cincinnati, OH 45221, USAHarvard-Smithsonian Center for Astrophysics , 60 Garden Street, Cambridge, MA 02138, USACentre for Extragalactic Astronomy, Durham University , South Road, Durham, DH1 3LE, UK; Institute for Computational Cosmology, Durham University , South Road, Durham, DH1 3LE, UKSchool of Science, Western Sydney University , Locked Bag 1797, Penrith, NSW 2751, Australia; CSIRO Astronomy & Space Science , P.O. Box 76, Epping, NSW 1710, AustraliaCenter for Gravitation, Cosmology, and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee , P.O. Box 413, Milwaukee, WI 53201, USASchool of Physics, University of Melbourne , Parkville, VIC 3010, AustraliaKavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University , Stanford, CA 94305, USAHarvard-Smithsonian Center for Astrophysics , 60 Garden Street, Cambridge, MA 02138, USASchool of Science, Western Sydney University , Locked Bag 1797, Penrith, NSW 2751, AustraliaWe analyze the cooling and feedback properties of 48 galaxy clusters at redshifts 0.4 < z < 1.3 selected from the South Pole Telescope (SPT) catalogs to evolve like the progenitors of massive and well-studied systems at z ∼ 0. We estimate the radio power at the brightest cluster galaxy (BCG) location of each cluster from an analysis of Australia Telescope Compact Array data. Assuming that the scaling relation between the radio power and active galactic nucleus (AGN) cavity power P _cav observed at low redshift does not evolve with redshift, we use these measurements in order to estimate the expected AGN cavity power in the core of each system. We estimate the X-ray luminosity within the cooling radius L _cool of each cluster from a joint analysis of the available Chandra X-ray and SPT Sunyaev–Zel’dovich (SZ) data. This allows us to characterize the redshift evolution of the P _cav / L _cool ratio. When combined with low-redshift results, these constraints enable investigations of the properties of the feedback–cooling cycle across 9 Gyr of cluster growth. We model the redshift evolution of this ratio measured for cool-core clusters by a log-normal distribution $\mathrm{Log}$ - ${ \mathcal N }(\alpha +\beta z,{\sigma }^{2})$ and constrain the slope of the mean evolution to β = −0.05 ± 0.47. This analysis improves the constraints on the slope of this relation by a factor of two. We find no evidence of redshift evolution of the feedback–cooling equilibrium in these clusters, which suggests that the onset of radio-mode feedback took place at an early stage of cluster formation. High values of P _cav / L _cool are found at the BCG location of noncool-core clusters, which might suggest that the timescales of the AGN feedback cycle and the cool core–noncool core transition are different. This work demonstrates that the joint analysis of radio, SZ, and X-ray data solidifies the investigation of AGN feedback at high redshifts.https://doi.org/10.3847/1538-4357/acc38dGalaxy clustersActive galactic nucleiX-ray astronomySunyaev-Zeldovich effectRadio active galactic nuclei |
spellingShingle | F. Ruppin M. McDonald J. Hlavacek-Larrondo M. Bayliss L. E. Bleem M. Calzadilla A. C. Edge M. D. Filipović B. Floyd G. Garmire G. Khullar K. J. Kim R. Kraft G. Mahler R. P. Norris A. O’Brien C. L. Reichardt T. Somboonpanyakul A. A. Stark N. Tothill Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis The Astrophysical Journal Galaxy clusters Active galactic nuclei X-ray astronomy Sunyaev-Zeldovich effect Radio active galactic nuclei |
title | Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis |
title_full | Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis |
title_fullStr | Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis |
title_full_unstemmed | Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis |
title_short | Redshift Evolution of the Feedback–Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra–SPT–ATCA Analysis |
title_sort | redshift evolution of the feedback cooling equilibrium in the core of 48 spt galaxy clusters a joint chandra spt atca analysis |
topic | Galaxy clusters Active galactic nuclei X-ray astronomy Sunyaev-Zeldovich effect Radio active galactic nuclei |
url | https://doi.org/10.3847/1538-4357/acc38d |
work_keys_str_mv | AT fruppin redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT mmcdonald redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT jhlavaceklarrondo redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT mbayliss redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT lebleem redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT mcalzadilla redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT acedge redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT mdfilipovic redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT bfloyd redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT ggarmire redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT gkhullar redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT kjkim redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT rkraft redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT gmahler redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT rpnorris redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT aobrien redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT clreichardt redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT tsomboonpanyakul redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT aastark redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis AT ntothill redshiftevolutionofthefeedbackcoolingequilibriuminthecoreof48sptgalaxyclustersajointchandrasptatcaanalysis |