Differential Geometry of the Family of Helical Hypersurfaces with a Light-like Axis in Minkowski Spacetime <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>

We investigate the class of helical hypersurfaces parametrized by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">x</mi><mo>=</mo><mi mathvari...

Full description

Bibliographic Details
Main Author: Erhan Güler
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/9/7/341
_version_ 1797587343420424192
author Erhan Güler
author_facet Erhan Güler
author_sort Erhan Güler
collection DOAJ
description We investigate the class of helical hypersurfaces parametrized by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">x</mi><mo>=</mo><mi mathvariant="fraktur">x</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></semantics></math></inline-formula>, characterized by a light-like axis in Minkowski spacetime <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>. We determine the matrices that represent the fundamental forms, Gauss map, and shape operator of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">x</mi></semantics></math></inline-formula>. Furthermore, employing the Cayley–Hamilton theorem, we compute the curvatures associated with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">x</mi></semantics></math></inline-formula>. We explore the conditions under which the curvatures of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">x</mi></semantics></math></inline-formula> possess the property of being umbilical. Moreover, we provide the Laplace–Beltrami operator for the family of helical hypersurfaces with a light-like axis in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>.
first_indexed 2024-03-11T00:35:46Z
format Article
id doaj.art-ff62df8001114536af80dc8bf93f21b3
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-11T00:35:46Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-ff62df8001114536af80dc8bf93f21b32023-11-18T21:39:59ZengMDPI AGUniverse2218-19972023-07-019734110.3390/universe9070341Differential Geometry of the Family of Helical Hypersurfaces with a Light-like Axis in Minkowski Spacetime <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>Erhan Güler0Department of Mathematics, Faculty of Sciences, Bartın University, Kutlubey Campus, 74100 Bartın, TurkeyWe investigate the class of helical hypersurfaces parametrized by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">x</mi><mo>=</mo><mi mathvariant="fraktur">x</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></semantics></math></inline-formula>, characterized by a light-like axis in Minkowski spacetime <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>. We determine the matrices that represent the fundamental forms, Gauss map, and shape operator of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">x</mi></semantics></math></inline-formula>. Furthermore, employing the Cayley–Hamilton theorem, we compute the curvatures associated with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">x</mi></semantics></math></inline-formula>. We explore the conditions under which the curvatures of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">x</mi></semantics></math></inline-formula> possess the property of being umbilical. Moreover, we provide the Laplace–Beltrami operator for the family of helical hypersurfaces with a light-like axis in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>.https://www.mdpi.com/2218-1997/9/7/341Minkowski spacetimehelical hypersurfacelight-like axisGauss mapcurvature
spellingShingle Erhan Güler
Differential Geometry of the Family of Helical Hypersurfaces with a Light-like Axis in Minkowski Spacetime <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>
Universe
Minkowski spacetime
helical hypersurface
light-like axis
Gauss map
curvature
title Differential Geometry of the Family of Helical Hypersurfaces with a Light-like Axis in Minkowski Spacetime <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>
title_full Differential Geometry of the Family of Helical Hypersurfaces with a Light-like Axis in Minkowski Spacetime <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>
title_fullStr Differential Geometry of the Family of Helical Hypersurfaces with a Light-like Axis in Minkowski Spacetime <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>
title_full_unstemmed Differential Geometry of the Family of Helical Hypersurfaces with a Light-like Axis in Minkowski Spacetime <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>
title_short Differential Geometry of the Family of Helical Hypersurfaces with a Light-like Axis in Minkowski Spacetime <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>
title_sort differential geometry of the family of helical hypersurfaces with a light like axis in minkowski spacetime inline formula math display inline semantics msup mi mathvariant double struck l mi mn 4 mn msup semantics math inline formula
topic Minkowski spacetime
helical hypersurface
light-like axis
Gauss map
curvature
url https://www.mdpi.com/2218-1997/9/7/341
work_keys_str_mv AT erhanguler differentialgeometryofthefamilyofhelicalhypersurfaceswithalightlikeaxisinminkowskispacetimeinlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestrucklmimn4mnmsupsemanticsmathinlineformula