Differential Geometry of the Family of Helical Hypersurfaces with a Light-like Axis in Minkowski Spacetime <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">L</mi><mn>4</mn></msup></semantics></math></inline-formula>
We investigate the class of helical hypersurfaces parametrized by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">x</mi><mo>=</mo><mi mathvari...
Main Author: | Erhan Güler |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-07-01
|
Series: | Universe |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1997/9/7/341 |
Similar Items
-
The Global Property of Generic Conformally Flat Hypersurfaces in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>
by: Yayun Chen, et al.
Published: (2023-03-01) -
Helical Hypersurfaces in Minkowski Geometry <inline-formula> <math display="inline"> <semantics> <msubsup> <mi mathvariant="double-struck">E</mi> <mrow> <mn>1</mn> </mrow> <mn>4</mn> </msubsup> </semantics> </math> </inline-formula>
by: Erhan Güler
Published: (2020-07-01) -
Lower Porosity on <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></semantics></math></inline-formula>
by: Stanislaw Kowalczyk, et al.
Published: (2021-08-01) -
A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula>
by: Amirreza Fahim Golestaneh
Published: (2022-12-01) -
The Assymptotic Invariants of a Fermat-Type Set of Points in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mn mathvariant="bold">3</mn></msup></semantics></math></inline-formula>
by: Mikołaj Le Van, et al.
Published: (2024-12-01)