Total Domination on Some Graph Operators
Let <inline-formula><math display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inl...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-01-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/3/241 |
_version_ | 1797407211691966464 |
---|---|
author | José M. Sigarreta |
author_facet | José M. Sigarreta |
author_sort | José M. Sigarreta |
collection | DOAJ |
description | Let <inline-formula><math display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a graph; a set <inline-formula><math display="inline"><semantics><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></semantics></math></inline-formula> is a total dominating set if every vertex <inline-formula><math display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></semantics></math></inline-formula> has, at least, one neighbor in <i>D</i>. The total domination number <inline-formula><math display="inline"><semantics><mrow><msub><mi>γ</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the minimum cardinality among all total dominating sets. Given an arbitrary graph <i>G</i>, we consider some operators on this graph; <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="monospace">S</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi mathvariant="monospace">R</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="monospace">Q</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and we give bounds or the exact value of the total domination number of these new graphs using some parameters in the original graph <i>G</i>. |
first_indexed | 2024-03-09T03:38:02Z |
format | Article |
id | doaj.art-ff6bc122d9e74b2893746129ccf189cc |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-09T03:38:02Z |
publishDate | 2021-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-ff6bc122d9e74b2893746129ccf189cc2023-12-03T14:45:59ZengMDPI AGMathematics2227-73902021-01-019324110.3390/math9030241Total Domination on Some Graph OperatorsJosé M. Sigarreta0Faculty of Mathematics, Autonomous University of Guerrero, Carlos E. Adame 5, Col. La Garita, C. P. 39350 Acapulco, MexicoLet <inline-formula><math display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a graph; a set <inline-formula><math display="inline"><semantics><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></semantics></math></inline-formula> is a total dominating set if every vertex <inline-formula><math display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></semantics></math></inline-formula> has, at least, one neighbor in <i>D</i>. The total domination number <inline-formula><math display="inline"><semantics><mrow><msub><mi>γ</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the minimum cardinality among all total dominating sets. Given an arbitrary graph <i>G</i>, we consider some operators on this graph; <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="monospace">S</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi mathvariant="monospace">R</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="monospace">Q</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and we give bounds or the exact value of the total domination number of these new graphs using some parameters in the original graph <i>G</i>.https://www.mdpi.com/2227-7390/9/3/241domination theorytotal dominationgraph operators |
spellingShingle | José M. Sigarreta Total Domination on Some Graph Operators Mathematics domination theory total domination graph operators |
title | Total Domination on Some Graph Operators |
title_full | Total Domination on Some Graph Operators |
title_fullStr | Total Domination on Some Graph Operators |
title_full_unstemmed | Total Domination on Some Graph Operators |
title_short | Total Domination on Some Graph Operators |
title_sort | total domination on some graph operators |
topic | domination theory total domination graph operators |
url | https://www.mdpi.com/2227-7390/9/3/241 |
work_keys_str_mv | AT josemsigarreta totaldominationonsomegraphoperators |