Total Domination on Some Graph Operators

Let <inline-formula><math display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inl...

Full description

Bibliographic Details
Main Author: José M. Sigarreta
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/3/241
_version_ 1797407211691966464
author José M. Sigarreta
author_facet José M. Sigarreta
author_sort José M. Sigarreta
collection DOAJ
description Let <inline-formula><math display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a graph; a set <inline-formula><math display="inline"><semantics><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></semantics></math></inline-formula> is a total dominating set if every vertex <inline-formula><math display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></semantics></math></inline-formula> has, at least, one neighbor in <i>D</i>. The total domination number <inline-formula><math display="inline"><semantics><mrow><msub><mi>γ</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the minimum cardinality among all total dominating sets. Given an arbitrary graph <i>G</i>, we consider some operators on this graph; <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="monospace">S</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi mathvariant="monospace">R</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="monospace">Q</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and we give bounds or the exact value of the total domination number of these new graphs using some parameters in the original graph <i>G</i>.
first_indexed 2024-03-09T03:38:02Z
format Article
id doaj.art-ff6bc122d9e74b2893746129ccf189cc
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T03:38:02Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-ff6bc122d9e74b2893746129ccf189cc2023-12-03T14:45:59ZengMDPI AGMathematics2227-73902021-01-019324110.3390/math9030241Total Domination on Some Graph OperatorsJosé M. Sigarreta0Faculty of Mathematics, Autonomous University of Guerrero, Carlos E. Adame 5, Col. La Garita, C. P. 39350 Acapulco, MexicoLet <inline-formula><math display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a graph; a set <inline-formula><math display="inline"><semantics><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></semantics></math></inline-formula> is a total dominating set if every vertex <inline-formula><math display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></semantics></math></inline-formula> has, at least, one neighbor in <i>D</i>. The total domination number <inline-formula><math display="inline"><semantics><mrow><msub><mi>γ</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the minimum cardinality among all total dominating sets. Given an arbitrary graph <i>G</i>, we consider some operators on this graph; <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="monospace">S</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi mathvariant="monospace">R</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="monospace">Q</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and we give bounds or the exact value of the total domination number of these new graphs using some parameters in the original graph <i>G</i>.https://www.mdpi.com/2227-7390/9/3/241domination theorytotal dominationgraph operators
spellingShingle José M. Sigarreta
Total Domination on Some Graph Operators
Mathematics
domination theory
total domination
graph operators
title Total Domination on Some Graph Operators
title_full Total Domination on Some Graph Operators
title_fullStr Total Domination on Some Graph Operators
title_full_unstemmed Total Domination on Some Graph Operators
title_short Total Domination on Some Graph Operators
title_sort total domination on some graph operators
topic domination theory
total domination
graph operators
url https://www.mdpi.com/2227-7390/9/3/241
work_keys_str_mv AT josemsigarreta totaldominationonsomegraphoperators