Cobalt‐Nickel Ultrathin Hexagonal Nanosheets for High‐performance Asymmetric Supercapacitors

Abstract In this work, uniform ultrathin hexagonal nanosheets of Co−Ni bimetallic hydroxides are synthesized using a simple green hydrothermal synthesis method. By tuning a Co/Ni mole ratio of 1 : 2, a special nanosheet structure of Co0.32Ni0.68(OH)2 was obtained with high interlayer spacing and lar...

Full description

Bibliographic Details
Main Authors: Dr. Xuebing Xu, Dr. Yang Song, Dr. Chaoquan Hu, Dr. Mingyuan Shao, Dr. Chang Li
Format: Article
Language:English
Published: Wiley-VCH 2023-05-01
Series:ChemElectroChem
Subjects:
Online Access:https://doi.org/10.1002/celc.202300023
Description
Summary:Abstract In this work, uniform ultrathin hexagonal nanosheets of Co−Ni bimetallic hydroxides are synthesized using a simple green hydrothermal synthesis method. By tuning a Co/Ni mole ratio of 1 : 2, a special nanosheet structure of Co0.32Ni0.68(OH)2 was obtained with high interlayer spacing and large pore size. This nanosheet exhibits an enhanced specific capacity as high as 1021.96 C/g at 0.5 A/g, 12 times higher than Co(OH)2 (83.23 C/g). The high electrochemical performance is attributed to the interfacial interaction between Co2+ and Ni2+, as well as its special nanosheet structure. The advantages of the composition and structure are further confirmed by density functional theory (DFT) calculations. Besides, the energy storage process was visually observed by in situ Fourier transform infrared (FTIR) spectroscopy. Furthermore, an asymmetric supercapacitor (ASC) is assembled by Co0.32Ni0.68(OH)2 and activated carbon electrodes. The ASC delivers a high energy density of 54.97 W h/kg at a power density of 1.68 kW/kg and maintains 33.52 W h/kg at 32.66 kW/kg. These results highlight the promising applications of ultrathin Co0.32Ni0.68(OH)2 nanosheets as a high‐performance electrode material in supercapacitors.
ISSN:2196-0216