Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function

We are used Bayes estimators for unknown scale parameter  when shape Parameter  is known of Erlang distribution. Assuming different informative priors for unknown scale  parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unk...

Full description

Bibliographic Details
Main Author: Jinan A. Naser Al-obedy
Format: Article
Language:English
Published: University of Baghdad 2023-07-01
Series:Ibn Al-Haitham Journal for Pure and Applied Sciences
Subjects:
Online Access:https://jih.uobaghdad.edu.iq/index.php/j/article/view/3099
_version_ 1797776213293400064
author Jinan A. Naser Al-obedy
author_facet Jinan A. Naser Al-obedy
author_sort Jinan A. Naser Al-obedy
collection DOAJ
description We are used Bayes estimators for unknown scale parameter  when shape Parameter  is known of Erlang distribution. Assuming different informative priors for unknown scale  parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter  which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been compared in terms of their mean-squared error (MSE). We concluded that the best estimators of the scale parameterof the Erlang distribution, based on GELF for the shape parameter (c=1,2,3) under inverse gamma prior with for all samples sizes(n) where the true cases of the Erlang model are  and  according to the smallest values of MSE
first_indexed 2024-03-12T22:46:44Z
format Article
id doaj.art-ff7ec8dc777848e296d1696b2d6a5d2f
institution Directory Open Access Journal
issn 1609-4042
2521-3407
language English
last_indexed 2024-03-12T22:46:44Z
publishDate 2023-07-01
publisher University of Baghdad
record_format Article
series Ibn Al-Haitham Journal for Pure and Applied Sciences
spelling doaj.art-ff7ec8dc777848e296d1696b2d6a5d2f2023-07-21T05:07:05ZengUniversity of BaghdadIbn Al-Haitham Journal for Pure and Applied Sciences1609-40422521-34072023-07-0136310.30526/36.3.3099Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss FunctionJinan A. Naser Al-obedy0Technical College of Management-Baghdad, Middle Technical university, We are used Bayes estimators for unknown scale parameter  when shape Parameter  is known of Erlang distribution. Assuming different informative priors for unknown scale  parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter  which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been compared in terms of their mean-squared error (MSE). We concluded that the best estimators of the scale parameterof the Erlang distribution, based on GELF for the shape parameter (c=1,2,3) under inverse gamma prior with for all samples sizes(n) where the true cases of the Erlang model are  and  according to the smallest values of MSE https://jih.uobaghdad.edu.iq/index.php/j/article/view/3099The Erlang distribution, Bayes estimation, The posterior density, Posterior mean, Posterior variance, GELF, MSE.
spellingShingle Jinan A. Naser Al-obedy
Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
Ibn Al-Haitham Journal for Pure and Applied Sciences
The Erlang distribution, Bayes estimation, The posterior density, Posterior mean, Posterior variance, GELF, MSE.
title Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
title_full Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
title_fullStr Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
title_full_unstemmed Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
title_short Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
title_sort bayesian approach for estimating the unknown scale parameter of erlang distribution based on general entropy loss function
topic The Erlang distribution, Bayes estimation, The posterior density, Posterior mean, Posterior variance, GELF, MSE.
url https://jih.uobaghdad.edu.iq/index.php/j/article/view/3099
work_keys_str_mv AT jinananaseralobedy bayesianapproachforestimatingtheunknownscaleparameteroferlangdistributionbasedongeneralentropylossfunction